大语言模型的记忆革命:从上下文到权重注入的未来路径
本文深度还原了Jack Morris在2025年Cornell演讲的核心洞见,聚焦大语言模型(LLM)如何突破知识边界,从上下文窗口、检索增强生成(RAG)到将知识直接训练进模型权重。通过真实案例、前沿技术对比和行业趋势,帮助你理解下一代AI系统的构建方法。
本文深度还原了Jack Morris在2025年Cornell演讲的核心洞见,聚焦大语言模型(LLM)如何突破知识边界,从上下文窗口、检索增强生成(RAG)到将知识直接训练进模型权重。通过真实案例、前沿技术对比和行业趋势,帮助你理解下一代AI系统的构建方法。
这场演讲不是在罗列RAG新名词,而是给出了一套“何时该用什么”的实战路线图。前Google搜索工程师David Karam用真实失败案例解释:RAG不是一次性架构设计,而是按影响和成本逐步叠加的工程决策过程。
这是一场来自11x一线工程师的真实分享,讲述他们如何为AI销售代表Alice构建“大脑”。文章将还原他们从失败的上下文堆叠,到知识库+RAG架构的转折过程,深入解析解析、存储、检索与可视化背后的工程取舍。
一场来自Harvey与LanceDB的联合分享,首次系统讲清楚企业级RAG在法律场景下面临的真实难题:复杂查询、超大规模数据、严格安全要求,以及为什么“评估”比算法本身更重要。
这是一堂从最基础的关键词搜索讲起,逐步走向向量搜索与混合检索的实战课程。Elastic 的 Philipp Krenn 用大量现场演示告诉你:RAG 的成败不在模型,而在你是否真正理解“检索”这件事。
在这场来自NVIDIA的分享中,Mitesh Patel系统讲解了HybridRAG——一种将知识图谱与向量检索融合的RAG架构。相比单一向量检索,它更可控、更可解释,也更适合走向生产环境。
Zep创始成员Daniel Chalef提出一个尖锐观点:AI Agent的记忆问题不在于检索不够聪明,而在于记忆建模从一开始就错了。他通过真实演示说明,单纯用向量数据库和RAG存“事实”,只会让无关信息污染记忆,最终放大幻觉。
在这场由Neo4j三位核心成员分享的实践演讲中,GraphRAG被视为解决RAG幻觉、相关性不足和不可解释性的关键路径。文章梳理了GraphRAG的动机、方法论、技术流程与真实演示,解释为何“向量相似≠业务相关”,以及知识图谱如何让LLM变得更可靠。
Nir Gazit用一次真实的RAG机器人优化实验,挑战了“提示工程是一门手艺”的共识。他没有手工打磨prompt,而是用评估器和Agent把效果从0.4推到0.9,给出了一条更像工程、也更可扩展的路径。
这场演讲直指企业AI落地的最大幻觉:只要把数据“准备好”,AI就能可靠工作。Anushrut Gupta用大量真实场景说明,问题不在数据工具,而在AI不懂业务语言,并提出一种“像新人分析师一样成长”的Agentic语义层方案。