从工具到系统:微软科学家谈AI Agent应用落地
Michael Albada在演讲中系统拆解了AI Agent应用从概念到落地的全过程。他不谈炫技,而是聚焦真实产品中遇到的障碍:工具设计、单体到多智能体的转变,以及评估与可观测性,勾勒出一条务实的工程路线。
Michael Albada在演讲中系统拆解了AI Agent应用从概念到落地的全过程。他不谈炫技,而是聚焦真实产品中遇到的障碍:工具设计、单体到多智能体的转变,以及评估与可观测性,勾勒出一条务实的工程路线。
Baseten CTO Amir Haghighat 基于三年一线销售与落地经验,讲述了企业从 OpenAI、Anthropic 等闭源模型起步,却在 2025 年开始系统性转向开源模型的真实原因。这不是意识形态之争,而是质量、延迟、成本与“命运掌控权”的现实博弈。
在这场由Neo4j三位核心成员分享的实践演讲中,GraphRAG被视为解决RAG幻觉、相关性不足和不可解释性的关键路径。文章梳理了GraphRAG的动机、方法论、技术流程与真实演示,解释为何“向量相似≠业务相关”,以及知识图谱如何让LLM变得更可靠。
微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。
这场来自微软的技术演讲,并没有停留在“AI Agent是什么”的概念层面,而是用完整的工程实践,展示了如何用Azure AI Agent Service真正构建、运行和约束一个Agent系统。文章将带你理解2025年Agent浪潮背后的方法论,以及微软在工程化上的关键取舍。
在这场由微软首席AI布道师Cedric Vidal带来的分享中,评估被重新定义为AI Agent开发的起点而非终点。通过手动评估、Spot Check到代码化和多模态评估的逐步演示,他展示了一条让Agent真正可控、可扩展的实践路径。
当云端AI仍在狂飙,微软却在系统性推进“本地AI”。在这场演讲中,Foundry Local首次完整展示了微软对边缘AI的判断、技术积累与真实落地方式,解释了为什么现在正是本地AI成熟的关键节点。
这场由微软MCP指导委员会成员带来的分享,系统解释了为何“受保护的MCP服务器”正在成为必要能力。文章将带你理解本地与远程MCP服务器在安全模型上的根本差异、新规范试图解决的真实痛点,以及微软在VS Code和API Management中的具体落地思路。
Anthropic 产品经理 Theodora Chu 亲述 MCP 的起源与野心:它并不是又一个工具调用协议,而是一场围绕“模型自主性”的长期赌注。从工程师反复复制上下文的痛点,到 Cursor、Google、OpenAI 的集体采用,这次演讲给了创业者非常具体的判断框架:接下来该往哪里建。
Last Mile AI CEO Sarmad Qadri结合自己从语言服务器协议到AI Agent的长期经验,提出了一个关键判断:2025年将是Agent大规模进入生产环境的一年。在这次分享中,他系统解释了Agent技术栈的三大变化、MCP为何会成为事实标准,以及为什么“Agent本质上是异步工作流”。