用 Effect 构建可靠 AI 客服代理:一线 CTO 的实战方法论
来自 14.ai 联合创始人兼 CTO Michael Fester 的真实经验,系统讲述如何用 TypeScript 的 Effect 库,在充满不确定性的 LLM 场景中构建可预测、可观测、可扩展的 AI 客服代理系统。
来自 14.ai 联合创始人兼 CTO Michael Fester 的真实经验,系统讲述如何用 TypeScript 的 Effect 库,在充满不确定性的 LLM 场景中构建可预测、可观测、可扩展的 AI 客服代理系统。
这篇文章还原了Travis Frisinger关于“连贯性陷阱”的核心观点:大语言模型之所以让人感觉聪明,并非因为它们在思考,而是因为它们在高维空间中制造了强烈的连贯感。通过个人实验、工具构建和理论反思,演讲者给出了一个极具启发性的设计方向:停止追逐智能,转而设计结构化共振。
这场演讲分享了Cato在构建云架构AI Copilot过程中的真实探索:为什么传统自动化不够用,以及如何通过多智能体、图结构和严谨评估,让AI参与复杂的架构推理与决策。
Ahmad Awais用一次现场“vibe coding”演示,讲清了一个反直觉结论:真正跑在生产环境里的AI Agent,几乎都不是用框架搭出来的,而是直接基于AI原语。本文还原他的技术判断、个人经历,以及一套可复用的Agent构建方法论。
在这场带点“吐槽味”的演讲中,Smithery 创始人 Henry 直指 MCP(模型上下文协议)生态的真实困境:智能已经到位,但能力仍被困在盒子里。文章带你理解 MCP 为何重要、它目前卡在哪里,以及为什么下一代互联网可能由“工具调用”而非“点击”主导。
本文深入解析了Y Combinator创业者在AI代理和提示工程领域的最新实践,分享了独特的行业洞见、真实的创业故事,以及当前最有效的技术方法。通过具体案例和金句,带你理解AI代理如何从“像编程一样”变成“像管理人一样”,并揭示了未来AI产品的核心竞争力。
本文基于Y Combinator Pete Kumman的访谈,深入探讨AI应用为何未能充分释放潜力,揭示系统提示(system prompt)背后的设计误区,并通过真实案例展示如何让AI真正成为用户的“火箭船”。文章还预测了AI工具与用户交互的新范式,对开发者和产品经理极具启发意义。
YC合伙人Tom分享了自己一个月的“vibe coding”实验,系统总结了如何与大语言模型协作写代码而不失控。从心态、流程到具体技巧,这是一套来自一线创业者的实战方法论。
Thomson Reuters Labs 的 Shirsha Chaudhuri 通过真实的企业一线经验,拆解了“AI 工作流自动化”迟迟难以落地的关键原因。问题不在模型能力,而在连接、可靠性、标准化和人与 AI 的协作方式。
在 AI Agent 工具爆发的当下,Aparna Dhinkaran 提醒行业:真正决定成败的不是你能不能“做出 Agent”,而是你是否知道它在真实世界里有没有正确工作。这场演讲系统拆解了 Agent 的结构、评估方法,以及语音与多模态时代带来的全新挑战。