让AI代理真正“记住”:一场关于记忆、图与智能本质的思考
这是一场不太像传统技术分享的演讲。Mark Bain 从个人经历出发,把 AI Agent 的“记忆问题”放进更大的数学、物理和生物学框架中重新审视,并提出:只有把记忆当成结构化的关系网络,而不是简单存储,AI 才可能真正走向自治与协作。
这是一场不太像传统技术分享的演讲。Mark Bain 从个人经历出发,把 AI Agent 的“记忆问题”放进更大的数学、物理和生物学框架中重新审视,并提出:只有把记忆当成结构化的关系网络,而不是简单存储,AI 才可能真正走向自治与协作。
MongoDB 的 Apoorva Joshi 用一场近 90 分钟的演讲,系统拆解了如何从零构建多模态 AI Agent,更重要的是,她反复强调一个被忽视的问题:什么时候真的需要 Agent,什么时候反而不该用。
这场演讲给出了一个清晰判断:未来 AI Agent 的竞争核心不在提示词,而在记忆。MongoDB 的 Richmond Alake 从工程实践出发,系统拆解了 Agent Memory 的定义、类型、架构模式以及检索的重要性,解释了为什么“没有记忆,就没有真正的 Agent”。
这场来自微软的技术演讲,并没有停留在“AI Agent是什么”的概念层面,而是用完整的工程实践,展示了如何用Azure AI Agent Service真正构建、运行和约束一个Agent系统。文章将带你理解2025年Agent浪潮背后的方法论,以及微软在工程化上的关键取舍。
在这场由微软首席AI布道师Cedric Vidal带来的分享中,评估被重新定义为AI Agent开发的起点而非终点。通过手动评估、Spot Check到代码化和多模态评估的逐步演示,他展示了一条让Agent真正可控、可扩展的实践路径。
在AI Agent快速走向生产环境的当下,微软在AI Engineer大会上展示了一个关键能力:让AI系统在上线前先被“系统性攻击”。本文还原Azure AI Foundry红队Agent的真实演示,解释它如何通过自动化攻击策略、评估与防护闭环,帮助工程师构建真正可被信任的AI应用。
当云端AI仍在狂飙,微软却在系统性推进“本地AI”。在这场演讲中,Foundry Local首次完整展示了微软对边缘AI的判断、技术积累与真实落地方式,解释了为什么现在正是本地AI成熟的关键节点。
LlamaIndex 开发者关系副总裁 Laurie Voss 用 15 分钟浓缩了一个关键信息:真正能在生产中跑起来的 Agent,靠的不是“更聪明的模型”,而是扎实的设计模式。这场演讲从 RAG 的必要性讲起,逐步引出链式、路由和编排式等 Agent 架构,给出了一套可复用的方法论。
在这场演讲中,Jim Bennett用一连串真实翻车案例和现场演示,解释了为什么AI代理天生不值得“信任”,以及如何通过“以评估为核心、以可观测性为驱动”的方法,把不可预测的AI系统驯服成可控的软件系统。
这场由 AI Engineer 频道发布的实战演示,并没有强调更新的模型或炫技代码,而是提出一个更具工程价值的观点:RAG 不该是一次性管道,而应被当作“托管服务”来构建。通过现场一步步搭建 Agent、接入数据、做评估,演讲者展示了如何把 RAG 从 Demo 推向可生产化系统。