从预训练到智能体共创:OpenAI研究员眼中的AI新范式
OpenAI研究员Karina Nguyen回顾了过去数年AI研究的两次关键扩展范式转变,并结合ChatGPT与Claude等产品经验,分享了智能体(AI Agent)如何从“工具”走向“协作者”,以及这些变化对产品设计与人机协作方式的深远影响。
OpenAI研究员Karina Nguyen回顾了过去数年AI研究的两次关键扩展范式转变,并结合ChatGPT与Claude等产品经验,分享了智能体(AI Agent)如何从“工具”走向“协作者”,以及这些变化对产品设计与人机协作方式的深远影响。
Thomson Reuters Labs 的 Shirsha Chaudhuri 通过真实的企业一线经验,拆解了“AI 工作流自动化”迟迟难以落地的关键原因。问题不在模型能力,而在连接、可靠性、标准化和人与 AI 的协作方式。
在 AI Agent 工具爆发的当下,Aparna Dhinkaran 提醒行业:真正决定成败的不是你能不能“做出 Agent”,而是你是否知道它在真实世界里有没有正确工作。这场演讲系统拆解了 Agent 的结构、评估方法,以及语音与多模态时代带来的全新挑战。
这是一场由 OpenAI 开发者体验团队成员 Ilan Bigio 主讲的实战型工作坊。它没有炫技式 Demo,而是从函数调用的“原始用法”出发,一步步推演出 Agent、记忆、委托、异步执行,直到对未来“生成代码式 Agent”的判断,勾勒出一条清晰但正在被忽视的技术演进路径。
Datadog的Diamond Bishop分享了他们构建“永不睡觉的DevOps工程师”的实践经验。这不仅是一个AI Agent产品故事,更是一套关于评估、协作与边界的工程方法论,揭示了AI如何真正进入生产系统。
这不是科幻设想,而是Augment Code团队的真实经历:一个AI编码代理在人的监督下,写下了自己90%以上的代码。Colin Flaherty分享了这个自举型Agent从集成工具、写测试到给自己做性能优化的全过程,以及他们在实践中踩过的坑与形成的方法论。
这场由 Vercel AI SDK 团队成员 Nico 主讲的 Masterclass,不只是一次 API 教程,而是完整展示了如何用统一接口、工具调用和结构化输出,逐步搭建一个“深度研究型 AI Agent”。从最基础的 generateText,到递归式研究代理,视频给出了清晰、可复用的工程路径。
在这场近两小时的工作坊中,MemGPT 与 Letta 的创始人 Charles Packer 系统讲解了什么是 Stateful Agents,以及为什么“记忆”会成为下一代 AI 应用的分水岭。本文提炼了他关于 Agent 稳定性、记忆架构、工程取舍和真实应用场景的关键洞见。
Apache Ranger 创始成员 Don Bosco Durai 结合自身开源与创业经历,系统拆解了 AI Agent 在企业落地时被严重低估的安全与合规问题,并给出一套可执行的三层方法论:从安全评估、零信任执行到持续可观测性,帮助团队真正把 Agent 放进生产环境。
在这场演讲中,SuperDial工程师Nick分享了他们在真实电话场景中构建语音AI的经验:为什么“无聊但可靠”的通话才是好产品,以及语音AI工程师在2025年究竟要解决哪些最后一公里问题。