Gemini这一年:一次“转折点”背后的模型、组织与未来
这是一次来自Google DeepMind一线的内部复盘。Logan Kilpatrick用不到12分钟,讲清了Gemini过去一年真正的转折点:为什么2.5 Pro意义重大,DeepMind为何从“纯研究”转向“研究+交付”,以及他们眼中多模态、Agent和“无限上下文”的下一站。
这是一次来自Google DeepMind一线的内部复盘。Logan Kilpatrick用不到12分钟,讲清了Gemini过去一年真正的转折点:为什么2.5 Pro意义重大,DeepMind为何从“纯研究”转向“研究+交付”,以及他们眼中多模态、Agent和“无限上下文”的下一站。
这是一场来自OpenAI开发者体验团队的一线分享。Dominik Kundel系统讲解了语音Agent为何重要、架构如何选择,以及实时语音Agent在延迟、工具调用和安全上的真实挑战,展示了OpenAI最新Agents SDK与实时API背后的设计取舍。
这是一场关于“上下文”的技术演讲。Windsurf的工程师Sam Fertig用轻松的开场和层层递进的推理,解释了为什么当下AI写代码真正的瓶颈不在模型能力,而在于是否真正理解“你”和“你的代码库”。
微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。
MongoDB收购的创业公司CEO、斯坦福教师腾宇·马,从一线实践出发,讲述RAG在2025年的真实状态:为什么它仍然不可替代、哪些改进已经被验证有效,以及多模态Embedding将把RAG带向哪里。
Anthropic 产品经理 Theodora Chu 亲述 MCP 的起源与野心:它并不是又一个工具调用协议,而是一场围绕“模型自主性”的长期赌注。从工程师反复复制上下文的痛点,到 Cursor、Google、OpenAI 的集体采用,这次演讲给了创业者非常具体的判断框架:接下来该往哪里建。
Wordware CEO Filip Kozera 直言:聊天式 AI 天生不适合构建可复用、可扩展的系统。真正能把自然语言转化为代码、并催生后台智能体(Agents)的,是结构化文档与人类在环的协作方式。
大模型Agent的失败,往往不是模型不够聪明,而是工具太“愚蠢”。Wordware联合创始人Robert Chandler结合自动驾驶与AI Agent实践,提出一个反直觉但关键的观点:不要让Agent被低级工具拖累,而是让工具本身具备更多“代理性”,真正学会替人思考和行动。
一次看似不可能的任务:两周内分析一万通销售电话。Charlie Guo 通过大语言模型、工程化系统设计和成本控制,把原本需要两年的人力工作,变成单人可完成的AI项目。这篇文章还原了其中最关键的技术决策、踩过的坑,以及对企业数据价值的深刻启示。
本文深入解析了Y Combinator创业者在AI代理和提示工程领域的最新实践,分享了独特的行业洞见、真实的创业故事,以及当前最有效的技术方法。通过具体案例和金句,带你理解AI代理如何从“像编程一样”变成“像管理人一样”,并揭示了未来AI产品的核心竞争力。