为什么AI代理还没真正自动化企业流程?
Thomson Reuters Labs 的 Shirsha Chaudhuri 通过真实的企业一线经验,拆解了“AI 工作流自动化”迟迟难以落地的关键原因。问题不在模型能力,而在连接、可靠性、标准化和人与 AI 的协作方式。
Thomson Reuters Labs 的 Shirsha Chaudhuri 通过真实的企业一线经验,拆解了“AI 工作流自动化”迟迟难以落地的关键原因。问题不在模型能力,而在连接、可靠性、标准化和人与 AI 的协作方式。
LinkedIn并非一开始就要打造宏大的GenAI平台,而是在真实产品压力下,一步步演化出支撑AI Agent的基础设施。本文还原Xiaofeng Wang的分享,讲清楚他们为何自建平台、如何从简单Prompt走向多智能体系统,以及这些选择背后的工程与组织洞见。
PyTorch 联合创始人 Soumith Chintala 从亲身使用 AI 的挫折与收获出发,提出一个与主流云端 Agent 不同的判断:真正能托付个人生活的 AI,必须运行在本地、完全私有。本文还原他的关键故事、技术现实与尚未解决的挑战。
在Agentic AI成为主流的2025年,真正的难题已不再是模型能力,而是如何让AI系统变得可预测、可审计、可控制。AI Engineer频道的Adam Charlson提出,将有限状态机与Actor模型、LLM结合,或许是一条被低估但极其务实的路径。
一场来自Y Combinator的圆桌讨论,把AGI的分歧摊在台面上:有人认为已然到来,有人坚持仍很遥远。比时间更重要的是定义、能力边界与伦理共识。
这是一场罕见的群体式对话:40位Y Combinator背景的AI创始人,毫不修饰地谈论他们每天真实使用、构建和怀疑的人工智能。从写婚礼致辞到自动改UI代码,从创造力爆发到幻觉失控,这些一线经验勾勒出当下AI最真实的能力边界。
谷歌AI公共政策负责人Tim Hwang,从一线视角讲述AI技术爆发后,企业、政府与社会如何彼此拉扯与协商。这不仅是技术问题,更是价值与制度的选择题。