从RAG到多智能体:LlamaIndex的生产级Agent设计模式
LlamaIndex 开发者关系副总裁 Laurie Voss 用 15 分钟浓缩了一个关键信息:真正能在生产中跑起来的 Agent,靠的不是“更聪明的模型”,而是扎实的设计模式。这场演讲从 RAG 的必要性讲起,逐步引出链式、路由和编排式等 Agent 架构,给出了一套可复用的方法论。
LlamaIndex 开发者关系副总裁 Laurie Voss 用 15 分钟浓缩了一个关键信息:真正能在生产中跑起来的 Agent,靠的不是“更聪明的模型”,而是扎实的设计模式。这场演讲从 RAG 的必要性讲起,逐步引出链式、路由和编排式等 Agent 架构,给出了一套可复用的方法论。
这是一次少见的、从代码细节出发讨论“生产级 AI Agent”的分享。AWS 开发者布道师 Mike Chambers 用一个极简 Demo,拆解了 AI Agent 的最小可行结构,并解释了为什么真正的难点不在模型,而在工程化与系统设计。
这是一次来自 Anthropic 一线工程师的复盘分享,讲述他们在大规模落地 AI 工具调用时踩过的坑,以及为什么最终选择用 MCP 作为统一标准。文章将带你理解 MCP 真正解决了什么问题,以及它在安全、扩展性和组织效率上的长期价值。
这是一段关于生死边缘反击的故事。StackBlitz在几乎被董事会关停的情况下,用Bolt.new完成了DevTools领域少见的AI突围。Victoria Melnikova用亲历者视角,拆解了哪些AI策略注定失败,以及一个真正可复制的三步方法论。
这不是一场鼓吹AI取代程序员的演讲,而是一位资深架构师对“编程将走向何处”的冷静拆解。Ray Myers提出六种正在同时发生的未来图景,试图让开发者在焦虑与狂热之间,找到更清醒的位置。
大模型Agent的失败,往往不是模型不够聪明,而是工具太“愚蠢”。Wordware联合创始人Robert Chandler结合自动驾驶与AI Agent实践,提出一个反直觉但关键的观点:不要让Agent被低级工具拖累,而是让工具本身具备更多“代理性”,真正学会替人思考和行动。
这篇文章还原了Darius Emrani对AI基准测试体系的犀利批判:为什么这些排行榜能左右数十亿美元,却越来越不可信;大厂常用的三种“赢法”是什么;以及为什么真正想做出好产品的团队,应该停止追逐榜单,转而构建属于自己的评估体系。
Alex Liss提出,用AI模拟“看不见的用户”,让设计从堆砌聊天机器人回归真正的用户需求发现。通过智能用户分身(intelligent twins)参与设计流程,团队可以在更快、更大规模下发现痛点,修复AI时代的信任危机。
在这场带点“吐槽味”的演讲中,Smithery 创始人 Henry 直指 MCP(模型上下文协议)生态的真实困境:智能已经到位,但能力仍被困在盒子里。文章带你理解 MCP 为何重要、它目前卡在哪里,以及为什么下一代互联网可能由“工具调用”而非“点击”主导。
这场演讲给出了一个非常具体、可落地的判断:软件开发正在从“人+IDE里的AI助手”,走向“人+一群自治运行的编码Agent”。通过真实的单元测试Agent Guru,演讲者展示了Agent如何成为代码库里的“正式贡献者”,以及未来开发者真正该专注的价值所在。