Google DeepMind详解:Deep Research如何把聊天机器人变成研究助理
这场来自Google DeepMind的分享,首次系统揭示了Gemini Deep Research背后的产品动机、UX权衡与技术挑战。它不只是“更慢但更长的回答”,而是一次试图让AI真正完成研究工作的实验。
这场来自Google DeepMind的分享,首次系统揭示了Gemini Deep Research背后的产品动机、UX权衡与技术挑战。它不只是“更慢但更长的回答”,而是一次试图让AI真正完成研究工作的实验。
这篇文章基于Theory Ventures合伙人Andy Tadman的演讲,系统拆解了“大语言模型在哪些工作上已经是超人级别”的判断方法。你将看到一套清晰的自动化评估框架,以及安全运营和客户营销两个真实案例,理解为什么真正被颠覆的不是“复杂工作”,而是“高频工作”。
这场来自 TraceLoop CEO 的分享,用一个极其务实的视角解释了:为什么生成式 AI 的可观测性问题,不能从零重新发明,而应该建立在 OpenTelemetry 之上。你将理解日志、指标、追踪在 LLM 应用中的真实价值,以及 OpenLLMetry 如何把这些能力“自动”带入现有观测平台。
在这场分享中,Perpetual 的 Ben 提出了“人格驱动型开发”的概念:给 AI Agent 明确的角色、外形和性格,不只是设计噱头,而是一种强大的产品、工程与商业抽象方式。文章通过真实故事与一线经验,揭示这种设计范式的价值与代价。
在这期 YC《Light Cone》中,主持人围绕 OpenAI、Google、Meta 等最新模型进展,讨论了一个反直觉判断:基础模型越强,反而越利好初创公司。视频从上下文窗口、RAG 到平台公司的结构性局限,给出了对 AI 创业者极具现实意义的洞见。
这场演讲讲述了YouTube团队如何尝试让Gemini真正理解YouTube世界,并将大语言模型用于视频推荐与检索。核心不在于炫技,而是在规模、约束和产品现实下,重新思考LLM能做什么、不能做什么。
Steve Ruiz 讲述了 tldraw 从数字墨水库到 AI 画布计算机的演化历程。这不仅是一个白板工具的升级故事,更是一次关于“可编程画布 + 多模态 AI”如何重塑创作方式的探索。