用有限状态机驯服AI代理:一种可治理的多智能体构建范式
在Agentic AI成为主流的2025年,真正的难题已不再是模型能力,而是如何让AI系统变得可预测、可审计、可控制。AI Engineer频道的Adam Charlson提出,将有限状态机与Actor模型、LLM结合,或许是一条被低估但极其务实的路径。
在Agentic AI成为主流的2025年,真正的难题已不再是模型能力,而是如何让AI系统变得可预测、可审计、可控制。AI Engineer频道的Adam Charlson提出,将有限状态机与Actor模型、LLM结合,或许是一条被低估但极其务实的路径。
这不是一场教你用框架的Agent演讲,而是一位工程师带你从最原始的循环、判断和工具调用开始,亲手“跑起来、弄坏它”,直到真正理解Agent为何会像一个能自主行动的系统。
这支视频讨论了一个常被忽视的问题:当大语言模型进入几乎没有训练数据的领域时,该如何继续发挥价值?作者提出了一种务实的方法——用“可验证的规则和经验法则”去弥补知识缺口,让模型在低知识密度领域依然具备可用的推理能力。
Roy Derks在这场演讲中提出一个被严重低估的观点:AI Agent的能力上限,往往不是模型或框架决定的,而是由工具(Tool Calling)决定的。他结合自身创业与工程经验,系统讲解了为什么工具不是“管道”,而是AI应用层最重要的资产。
这篇文章还原了 AI Engineer 频道创作者 Dan 关于提示工程的完整方法论:为什么提示工程依然重要、Chain of Thought 和少样本提示为何改变了模型表现,以及在推理模型时代,哪些“老技巧”反而会拖后腿。读完你将知道,问题不在模型,而在你如何与它对话。
这场来自哥伦比亚大学研究者的演讲,试图回答一个被反复提起却很少被认真拆解的问题:什么才是真正的AI Agent,以及我们该如何系统性地提升它们的能力。视频从基础定义出发,结合学术研究,深入讨论了大语言模型在Agent场景下的自我改进、推理优化与测试时计算等关键方法。
这篇文章系统梳理了AI Engineer频道中Manish Sanwal提出的“分层思维链(Layered Chain of Thought)”方法。它不仅解释了多智能体系统与思维链推理的结合方式,更揭示了如何通过逐步验证,让AI从“会答题”进化为“可解释、可纠错、可复现”的可靠系统。
这场演讲提出了一个反直觉但极具现实意义的观点:企业AI落地的最大障碍不是模型能力,而是部署方式。Steven Moon主张,真正可规模化的AI代理,应该像员工一样工作在企业既有的安全边界内,而不是成为又一个需要审查的新系统。
这场来自 TraceLoop CEO 的分享,用一个极其务实的视角解释了:为什么生成式 AI 的可观测性问题,不能从零重新发明,而应该建立在 OpenTelemetry 之上。你将理解日志、指标、追踪在 LLM 应用中的真实价值,以及 OpenLLMetry 如何把这些能力“自动”带入现有观测平台。
许多团队投入大量精力做LLM评估,却依然在生产环境频频翻车。本文基于AI Engineer的一场演讲,解释为什么常见的评估体系会“看起来很好、实际上没用”,以及如何通过持续对齐评估器、数据集和真实用户需求,让评估真正产生价值。