当AI学会“作恶”:微软如何用红队Agent测试智能体的底线
在AI Agent快速走向生产环境的当下,微软在AI Engineer大会上展示了一个关键能力:让AI系统在上线前先被“系统性攻击”。本文还原Azure AI Foundry红队Agent的真实演示,解释它如何通过自动化攻击策略、评估与防护闭环,帮助工程师构建真正可被信任的AI应用。
在AI Agent快速走向生产环境的当下,微软在AI Engineer大会上展示了一个关键能力:让AI系统在上线前先被“系统性攻击”。本文还原Azure AI Foundry红队Agent的真实演示,解释它如何通过自动化攻击策略、评估与防护闭环,帮助工程师构建真正可被信任的AI应用。
这场由OpenAI工程师Ilan Bigio带来的分享,系统梳理了三种主流微调方式——SFT、DPO与RFT——以及它们各自解决的问题边界。与其把微调当成“最后的魔法”,他更强调一种工程化、循序渐进的思路:什么时候提示工程就够了,什么时候必须动用微调,以及如何避免投入巨大却收益有限。
这是一场关于Qwen未来路线的内部式分享。演讲者从Qwen 3的发布讲起,解释他们为何把“可部署性”“智能体能力”和“持续开源”放在同一优先级上,并坦诚讨论了强化学习和通用模型落地的现实难题。
Brightwave创始人Mike Conover从金融尽调一线的“人肉地狱”出发,讲述为什么金融AI Agent必须以“可验证”为核心设计原则,以及为何聊天式交互远不足以承载高风险金融决策。
当大多数公司直接接入现成AI工具时,Jane Street却选择了一条更难的路:围绕自研语言生态,从数据、训练到编辑器,重新打造AI开发工具链。这篇文章还原了他们如何在“模型不懂OCaml”的现实下,把大语言模型真正变成可用生产力。
在这场看似轻松却信息密度极高的演讲中,swyx给出了一个清晰信号:AI工程正在从“调用模型”迈向“构建Agent”。这不仅是技术能力成熟的结果,更是一场关于身份、方法论和产业方向的转变。
Morgan Stanley 机器学习研究员 Will Brown 通过一个真实项目故事,解释了为什么仅靠更大的模型无法催生真正的 AI Agent,以及强化学习如何成为连接模型、工具与环境的关键工程方法。
在这场来自AXA德国的真实分享中,Jeronim Morina用保险业的复杂场景,拆解了为什么“提示工程”正在失效,以及DSPy如何把大语言模型重新变成一个可优化、可度量、可工程化的系统。
DeepSeek R1并非横空出世,而是长期工程积累的集中爆发。本文拆解其在训练效率、模型架构与强化学习推理上的关键解锁,解释为何它以更低成本逼近o1级能力,并由此改写AI应用的成本曲线。
Y Combinator 的这期视频解释了 OpenAI o1 为什么被视为一代分水岭模型。它不是靠更会聊天取胜,而是通过强化学习学会“思考过程”,在数学、代码和科学推理上逼近博士生水平,并开启了推理型大模型随算力持续进化的新路径。