用有限状态机驯服AI代理:一种可治理的多智能体构建范式
在Agentic AI成为主流的2025年,真正的难题已不再是模型能力,而是如何让AI系统变得可预测、可审计、可控制。AI Engineer频道的Adam Charlson提出,将有限状态机与Actor模型、LLM结合,或许是一条被低估但极其务实的路径。
在Agentic AI成为主流的2025年,真正的难题已不再是模型能力,而是如何让AI系统变得可预测、可审计、可控制。AI Engineer频道的Adam Charlson提出,将有限状态机与Actor模型、LLM结合,或许是一条被低估但极其务实的路径。
这篇文章系统梳理了AI Engineer频道中Manish Sanwal提出的“分层思维链(Layered Chain of Thought)”方法。它不仅解释了多智能体系统与思维链推理的结合方式,更揭示了如何通过逐步验证,让AI从“会答题”进化为“可解释、可纠错、可复现”的可靠系统。
在这场来自AXA德国的真实分享中,Jeronim Morina用保险业的复杂场景,拆解了为什么“提示工程”正在失效,以及DSPy如何把大语言模型重新变成一个可优化、可度量、可工程化的系统。
Y Combinator 的这期视频解释了 OpenAI o1 为什么被视为一代分水岭模型。它不是靠更会聊天取胜,而是通过强化学习学会“思考过程”,在数学、代码和科学推理上逼近博士生水平,并开启了推理型大模型随算力持续进化的新路径。
这是一场罕见的群体式对话:40位Y Combinator背景的AI创始人,毫不修饰地谈论他们每天真实使用、构建和怀疑的人工智能。从写婚礼致辞到自动改UI代码,从创造力爆发到幻觉失控,这些一线经验勾勒出当下AI最真实的能力边界。
Pinterest搜索团队分享了他们将大语言模型引入搜索排序的完整实践:从相关性建模、内容标注,到用知识蒸馏解决规模与成本问题。这是一套已经在线服务数十亿搜索请求的真实系统,而不是实验室原型。
这是一场由 ComfyUI 原作者 ComfyAnonymous 亲自讲述的完整工作坊。从个人项目的诞生,到被数百万创作者和大厂采用,再到节点式工作流为何能承载生成式 AI 的未来,这场演讲给出了许多只有一线开发者才能说出的真实判断。
在这场演讲中,Bespoke Labs 创始工程师 Ryan Marten 复盘了 OpenThoughts 项目的完整探索过程:为什么 DeepSeek R1 的成功让他们意识到“数据配方”才是推理模型的关键,以及他们如何通过系统化实验,把监督微调(SFT)的推理能力推到新的高度。
这是一场典型“工程师视角”的AI工作坊。Daniel Han不追逐概念热词,而是从开源模型的真实演进出发,串起微调、人类反馈强化学习(RHF)、经典强化学习,再落到量化等工程取舍,帮助听众理解:今天的大模型能力,究竟是如何一步步被“驯化”出来的。
CloudChef联合创始人Nikhil Abraham分享了一个反直觉的结论:机器人做饭最大的难题不是硬件,而是软件。通过机器人基础模型、微调、强化学习与“菜谱状态机”,他们让通用机器人在真实厨房中接近专业厨师水准。