为什么Agent的大脑需要一本“作战手册”:从本体论到Graph RAG的实战收益
Neo4j 的 Jesús Barrasa 在这场分享中提出了一个反直觉但极具实践价值的观点:要让 AI Agent 更可靠,关键不只是更大的模型,而是一套清晰的“知识作战手册”——本体论。通过将本体论引入 Graph RAG,他展示了如何在构建和检索两个阶段显著提升 AI 应用的质量与可控性。
Neo4j 的 Jesús Barrasa 在这场分享中提出了一个反直觉但极具实践价值的观点:要让 AI Agent 更可靠,关键不只是更大的模型,而是一套清晰的“知识作战手册”——本体论。通过将本体论引入 Graph RAG,他展示了如何在构建和检索两个阶段显著提升 AI 应用的质量与可控性。
这场演讲给出了一个清晰判断:未来 AI Agent 的竞争核心不在提示词,而在记忆。MongoDB 的 Richmond Alake 从工程实践出发,系统拆解了 Agent Memory 的定义、类型、架构模式以及检索的重要性,解释了为什么“没有记忆,就没有真正的 Agent”。
MongoDB收购的创业公司CEO、斯坦福教师腾宇·马,从一线实践出发,讲述RAG在2025年的真实状态:为什么它仍然不可替代、哪些改进已经被验证有效,以及多模态Embedding将把RAG带向哪里。
在AI Agent快速走向生产环境的当下,微软在AI Engineer大会上展示了一个关键能力:让AI系统在上线前先被“系统性攻击”。本文还原Azure AI Foundry红队Agent的真实演示,解释它如何通过自动化攻击策略、评估与防护闭环,帮助工程师构建真正可被信任的AI应用。
LlamaIndex 开发者关系副总裁 Laurie Voss 用 15 分钟浓缩了一个关键信息:真正能在生产中跑起来的 Agent,靠的不是“更聪明的模型”,而是扎实的设计模式。这场演讲从 RAG 的必要性讲起,逐步引出链式、路由和编排式等 Agent 架构,给出了一套可复用的方法论。
在这场演讲中,Jim Bennett用一连串真实翻车案例和现场演示,解释了为什么AI代理天生不值得“信任”,以及如何通过“以评估为核心、以可观测性为驱动”的方法,把不可预测的AI系统驯服成可控的软件系统。
这场由 Pipecat 与 Tavus 联合分享的演讲,罕见地从工程一线拆解了“实时对话视频 AI”为什么过去很糟、现在终于可行,以及真正的难点不在模型本身,而在编排与部署。读完你会理解,一个 600 毫秒响应的对话式视频系统,究竟是怎样被搭出来的。
这场来自 AI Engineer 的演讲,通过 Gemini Live API 与 Pipecat 的现场演示,系统拆解了“实时语音 AI 为什么难、难在哪里、又是如何被逐层解决的”。它不仅讲技术,更解释了为什么语音会成为下一代 AI 应用的默认入口。
这场演讲表面谈的是Apple Silicon与大规模AI,真正的主线却是如何通过“质疑默认假设”,跳出主流GPU路径,重新理解AI与硬件的关系。Alex Cheema用科学史、个人思考和“硬件彩票”这一隐喻,讲述了一种少见但极具启发性的技术方法论。
这是一次来自 Anthropic 一线工程师的复盘分享,讲述他们在大规模落地 AI 工具调用时踩过的坑,以及为什么最终选择用 MCP 作为统一标准。文章将带你理解 MCP 真正解决了什么问题,以及它在安全、扩展性和组织效率上的长期价值。