通用人工智能的真实挑战:我们究竟在“规模化”什么?
当前AI领域对通用人工智能(AGI)的期待与现实之间存在显著张力。本文深入探讨了强化学习、大语言模型与持续学习的局限性,分析了为何模型尚未实现人类般的泛化与经济价值,并展望了未来AI发展的关键突破点。
当前AI领域对通用人工智能(AGI)的期待与现实之间存在显著张力。本文深入探讨了强化学习、大语言模型与持续学习的局限性,分析了为何模型尚未实现人类般的泛化与经济价值,并展望了未来AI发展的关键突破点。
Jerry Liu在这场演讲中直言不讳地指出:当前大量AI Agent并没有真正自动化知识工作。他结合LlamaIndex的实践经验,系统拆解了知识型Agent的真实难点——非结构化数据、工具调用和端到端行动,并给出了一套更务实的构建方法论。
这场演讲并不是在教你“怎么调Prompt”,而是试图回答一个更难的问题:为什么90%的LLM应用死在生产环境。Almog Baku用工程师和创业者的视角,提出了“LLM三角”方法论——模型、工程技术、数据,在SOP的约束下协同工作,才可能构建稳定、可复现的AI应用。
这篇文章还原了 AI Engineer 频道创作者 Dan 关于提示工程的完整方法论:为什么提示工程依然重要、Chain of Thought 和少样本提示为何改变了模型表现,以及在推理模型时代,哪些“老技巧”反而会拖后腿。读完你将知道,问题不在模型,而在你如何与它对话。
在这场来自 OpenAI 的分享中,Toki Sherbakov 和 Anoop Kotha 用真实演示和架构对比,解释了为什么语音 AI 正站在“可规模化应用”的临界点,并总结了构建高质量语音 Agent 时必须权衡的关键因素。