NVIDIA如何终结“尴尬转写”:企业级语音AI的真实打法
这场来自 NVIDIA Speech AI 团队的分享,揭示了一个常被忽视的事实:语音识别体验的差距,不在于单一模型有多聪明,而在于是否能围绕真实部署场景进行系统化设计。从流式ASR到多说话人识别,从模型结构到部署形态,NVIDIA给出了他们“终结尴尬转写”的方法论。
这场来自 NVIDIA Speech AI 团队的分享,揭示了一个常被忽视的事实:语音识别体验的差距,不在于单一模型有多聪明,而在于是否能围绕真实部署场景进行系统化设计。从流式ASR到多说话人识别,从模型结构到部署形态,NVIDIA给出了他们“终结尴尬转写”的方法论。
Ahmad Awais用一次现场“vibe coding”演示,讲清了一个反直觉结论:真正跑在生产环境里的AI Agent,几乎都不是用框架搭出来的,而是直接基于AI原语。本文还原他的技术判断、个人经历,以及一套可复用的Agent构建方法论。
这支视频展示了一个真正投入生产的AI视频剪辑Agent是如何被构建出来的。从最初被FFmpeg限制住的真实需求,到选择可被LLM“写代码”的视频引擎,再到带视觉反馈的Agent架构,这是一条非常工程化、也极具启发性的路线。
DeepSeek R1并非横空出世,而是长期工程积累的集中爆发。本文拆解其在训练效率、模型架构与强化学习推理上的关键解锁,解释为何它以更低成本逼近o1级能力,并由此改写AI应用的成本曲线。
这场来自LinkedIn AI的分享,讲述了他们如何用一个大语言模型统一推荐、排序与个性化任务,并一步步把它真正部署到线上。它不仅回答了“LLM能不能做推荐”,更详细拆解了在延迟、成本和效果之间反复拉扯的工程现实。