10B参数如何做出顶级Agent?Miniax M2的反直觉路径
这场演讲并不是一次常规的模型发布,而是一份关于“如何把小模型做成好用Agent”的方法论说明。Olive Song从开发者体验出发,解释了Miniax M2为何以10B参数,却在真实编码与Agent任务中赢得社区认可。
这场演讲并不是一次常规的模型发布,而是一份关于“如何把小模型做成好用Agent”的方法论说明。Olive Song从开发者体验出发,解释了Miniax M2为何以10B参数,却在真实编码与Agent任务中赢得社区认可。
Gabber CTO Neil Dwyer 分享了他们托管开源语音模型 Orpheus 的一线经验:从实时语音的成本压力出发,深入讲述音频 token、LoRA 微调、延迟控制与一致性哈希负载均衡,解释如何在真实生产环境中把语音 AI 的单位成本压到极低。
这场演讲围绕一个核心问题展开:为什么“通用机器人”在今天才变得可行?两位来自Physical Intelligence的研究者,从视觉-语言-动作模型(VLA)的技术突破、数据引擎的构建方式,到真实家庭场景中的机器人演示,给出了一个比“算力更强了”更具体、更残酷也更乐观的答案。
这场来自 Waymo 的技术分享,讲述了自动驾驶从早期神经网络到基础模型时代的关键跃迁。核心不在于“再堆一点模型”,而是如何用多模态、可解释的方式,解决规模化中最棘手的长尾安全问题。
Jerry Wu 和 Wyatt Marshall 系统梳理了浏览器代理的真实能力边界:读网页已接近可用,写网页却仍是硬骨头。他们用一个5000任务的真实基准,揭示了性能、失败模式和基础设施为何才是决定性因素。
这篇文章还原了YC Decoded对“Scaling Laws”的完整叙事:从GPT-2到GPT-3确立规模定律,从Chinchilla纠偏“只堆参数”的误区,再到OpenAI用推理模型与测试时算力开启新一轮扩展路径。你将理解:为什么AI并未撞墙,而是正在换一条更陡峭的增长曲线。
Anthropic推出的Claude Computer Use,让AI第一次像人一样“看屏幕、点按钮、填表格”。这不仅是功能升级,而是软件范式的转折点:模型开始适配现实世界的工具,AI代理时代真正到来。
Pinterest搜索团队分享了他们将大语言模型引入搜索排序的完整实践:从相关性建模、内容标注,到用知识蒸馏解决规模与成本问题。这是一套已经在线服务数十亿搜索请求的真实系统,而不是实验室原型。
Steve Ruiz 讲述了 tldraw 从数字墨水库到 AI 画布计算机的演化历程。这不仅是一个白板工具的升级故事,更是一次关于“可编程画布 + 多模态 AI”如何重塑创作方式的探索。