ARC AGI基准:重新定义人工智能的“聪明”与未来边界
本文深入解析ARC Prize团队如何用独特的智能定义和创新基准推动AI行业前进,揭示大模型背后真正的“通用智能”挑战,以及行业领军者Greg Camrad的故事和观点。你将看到AI评测的变革、技术演进的关键转折,以及通用人工智能的现实距离。
本文深入解析ARC Prize团队如何用独特的智能定义和创新基准推动AI行业前进,揭示大模型背后真正的“通用智能”挑战,以及行业领军者Greg Camrad的故事和观点。你将看到AI评测的变革、技术演进的关键转折,以及通用人工智能的现实距离。
Simon Willison 用一场充满幽默的演讲,回顾了 2025 年前六个月大模型世界的剧烈变化:模型更便宜、更强、本地可跑,也更危险。这篇文章提炼了他最重要的判断、案例和隐忧,帮你快速理解今年 LLM 发展的真实方向。
从Instruct GPT到GPT‑4.1,语言模型在“听话”这件事上并没有线性进步。AI21 Labs 的 Yuval Belfer 通过工程视角给出答案:问题不在模型,而在我们把所有复杂性都塞进了一个提示词。真正可靠的 AI Agent,需要规划与执行引擎。
来自 14.ai 联合创始人兼 CTO Michael Fester 的真实经验,系统讲述如何用 TypeScript 的 Effect 库,在充满不确定性的 LLM 场景中构建可预测、可观测、可扩展的 AI 客服代理系统。
前OpenAI首席研究官Bob McGrew在YC的对谈中,回顾了从早期研究到GPT系列的关键转折,并给出了他对AI代理、扩展定律和AGI路径的判断。这是一场少见的、把技术演进与真实决策过程连在一起的访谈。
YC《Lightcone》这期访谈回顾了GPT-4发布前后,一家垂直领域公司的真实经历,解释了为什么“垂直LLM Agent”正在成为最具爆发力的创业方向。它不是更大的模型,而是更贴近真实工作的AI。
一场来自Y Combinator的圆桌讨论,把AGI的分歧摊在台面上:有人认为已然到来,有人坚持仍很遥远。比时间更重要的是定义、能力边界与伦理共识。
这是一个关于耐心、技术拐点与真实需求的故事。Casetext联合创始人Jake Heller用10年时间,把律师数周的工作压缩到几分钟,最终以6.5亿美元卖出公司。这篇文章带你理解:为什么大模型让法律行业发生质变,以及真正的AI产品是如何被“磨”出来的。
Steve Ruiz 讲述了 tldraw 从数字墨水库到 AI 画布计算机的演化历程。这不仅是一个白板工具的升级故事,更是一次关于“可编程画布 + 多模态 AI”如何重塑创作方式的探索。