在Gemini时代构建:DeepMind如何定义下一代AI产品
这场来自Google DeepMind的现场分享,罕见地把视角从模型参数转向“如何真正构建产品”。Kat Kampf与Ammaar Reshi结合Gemini 3 Pro的发布,讲述了DeepMind多年技术积累如何转化为可用、可演示、可设计的AI能力。
这场来自Google DeepMind的现场分享,罕见地把视角从模型参数转向“如何真正构建产品”。Kat Kampf与Ammaar Reshi结合Gemini 3 Pro的发布,讲述了DeepMind多年技术积累如何转化为可用、可演示、可设计的AI能力。
本文带你回顾Transformer架构的诞生历程,揭示三次关键突破背后的故事与洞见,解析从LSTM到注意力机制再到Transformer的技术演变,以及它如何成为ChatGPT、Claude、Gemini等顶级AI的共同基石。你将看到技术转折点、人物经历与行业影响,获得只有这个视频才能带来的深度理解。
本文深度梳理了Y Combinator关于AI创业公司护城河的独家洞见,通过真实案例与行业方法论,揭示速度、技术壁垒、客户痛点与数据如何决定AI公司的生死。你将看到创业者如何在巨头环伺下突围,以及哪些护城河在AI时代真正有效。
本文基于Anthropic预训练负责人Nick Joseph在Y Combinator专访中的一手讲述,带你深入理解大模型预训练的底层逻辑、团队如何在资源有限时突破极限,以及AI未来面临的真实技术与伦理挑战。通过具体故事和独家洞见,揭示行业内部鲜为人知的决策与困惑。
本文带你深入了解OpenAI、DeepSeek和阿里巴巴在开源大语言模型领域的最新突破,揭示背后的技术细节、独特方法论和行业洞见。通过鲜活的案例和原话,帮助你理解这些模型如何改变AI应用与开发者生态。
本文深度还原Anthropic联合创始人Tom Brown的创业历程,揭示大模型行业的技术演进、团队文化与产品突围。你将看到Claude Code如何成为开发者新宠,以及AI基础设施背后的惊人扩张与挑战。
这场演讲围绕一个核心问题展开:为什么“通用机器人”在今天才变得可行?两位来自Physical Intelligence的研究者,从视觉-语言-动作模型(VLA)的技术突破、数据引擎的构建方式,到真实家庭场景中的机器人演示,给出了一个比“算力更强了”更具体、更残酷也更乐观的答案。
本文带你走进Chelsea Finn在Y Combinator分享的机器人学习前沿实践,从失败到突破,揭示通用机器人如何通过大规模数据、预训练与微调,逐步迈向“能做任何事”的物理智能。你将看到真实的技术难题、创业故事,以及对未来机器人行业的独到预判。
本文带你走进诺奖得主John Jumper的AI科学之路,揭秘AlphaFold背后的技术突破、真实故事与行业洞见。你将看到AI如何改变蛋白质结构预测、催生科学新范式,以及科学家们如何用AI工具创造意想不到的成果。
本文带你走进François Chollet在Y Combinator的演讲,了解AI领域从“规模化预训练”到“测试时自适应”的重大范式转变,以及ARC系列基准如何推动AGI的真正进步。文章还揭示了人类智能的本质、AI模型的瓶颈,以及未来AI如何像程序员一样自主发明和学习。