AI搜索正在进化:从Embedding到多模态与指令理解
MongoDB旗下Voyage AI的Frank Liu,用10多分钟梳理了AI搜索与检索的现状与未来。他不仅回顾了从BM25到Embedding的技术演进,更明确指出:真正拉开差距的不是“用不用向量”,而是Embedding质量、多模态能力,以及是否具备指令理解与推理能力。
MongoDB旗下Voyage AI的Frank Liu,用10多分钟梳理了AI搜索与检索的现状与未来。他不仅回顾了从BM25到Embedding的技术演进,更明确指出:真正拉开差距的不是“用不用向量”,而是Embedding质量、多模态能力,以及是否具备指令理解与推理能力。
当云端AI仍在狂飙,微软却在系统性推进“本地AI”。在这场演讲中,Foundry Local首次完整展示了微软对边缘AI的判断、技术积累与真实落地方式,解释了为什么现在正是本地AI成熟的关键节点。
LlamaIndex 开发者关系副总裁 Laurie Voss 用 15 分钟浓缩了一个关键信息:真正能在生产中跑起来的 Agent,靠的不是“更聪明的模型”,而是扎实的设计模式。这场演讲从 RAG 的必要性讲起,逐步引出链式、路由和编排式等 Agent 架构,给出了一套可复用的方法论。
当AI大幅加速写代码的“内循环”,测试、评审、合并、部署的“外循环”正在成为新的瓶颈。Graphite联合创始人Tomas Reimers分享了他们如何用AI解决AI带来的问题,以及为什么未来的开发工具必须是“AI原生”的。
在这场演讲中,Jim Bennett用一连串真实翻车案例和现场演示,解释了为什么AI代理天生不值得“信任”,以及如何通过“以评估为核心、以可观测性为驱动”的方法,把不可预测的AI系统驯服成可控的软件系统。
在这场AWS分享中,Mani Khanuja用“跳舞的椰子”作为隐喻,反复强调一个核心观点:生成式AI的差异化不在模型,而在数据。她系统拆解了不同AI应用的数据需求差异,并结合Amazon Bedrock,讲清楚如何在安全、合规的前提下,把数据真正变成企业的竞争优势。
这场演讲不是在讲“为什么要做评估”,而是直面一个更残酷的问题:当LLM真正进入生产环境,评估体系该如何跟上复杂度和速度?Dat Ngo结合大量真实落地经验,给出了一套围绕可观测性、信号设计和工程化迭代的评估方法论。
在这场演讲中,Braintrust 的 Manu Goyal 用童年故事和自动驾驶的真实经历,解释了为什么“Eval”不是AI开发的附属品,而是决定模型能否安全、快速走向生产的核心基础设施。
这场分享并不教你某个花哨的新模型,而是回答一个更现实的问题:当AI系统进入真实业务后,团队该如何知道“它真的在变好”?Doug Guthrie结合Braintrust的实践,系统讲解了Evals的组成、落地方式,以及如何形成持续改进的飞轮。
本文梳理了4Erunner Ventures联合创始人Kirsten Green在Y Combinator专访中的核心观点,涵盖AI产品创新、用户关系新范式、产品分发与市场竞争、健康与安全等领域。通过真实案例和前沿预判,帮助创业者理解AI时代的产品机会与挑战。