AI时代的20岁:创业、选择与真实价值的抉择
本文基于Y Combinator现场讨论,深入解析AI浪潮下年轻人如何规划人生和职业。你将看到真实创业故事、行业独特洞见,以及面对技术变革时的具体选择困境。无论是大学生、工程师还是创业者,这些经验和观点都能为你在AI时代找到属于自己的路径。
本文基于Y Combinator现场讨论,深入解析AI浪潮下年轻人如何规划人生和职业。你将看到真实创业故事、行业独特洞见,以及面对技术变革时的具体选择困境。无论是大学生、工程师还是创业者,这些经验和观点都能为你在AI时代找到属于自己的路径。
本文带你走进François Chollet在Y Combinator的演讲,了解AI领域从“规模化预训练”到“测试时自适应”的重大范式转变,以及ARC系列基准如何推动AGI的真正进步。文章还揭示了人类智能的本质、AI模型的瓶颈,以及未来AI如何像程序员一样自主发明和学习。
这场来自 AI Engineer 的演讲,揭示了大量生成式 AI 产品失败的真正原因:不是模型不够强,而是运营体系跟不上。演讲者用一线经验说明,评测、人类反馈与团队结构,才是跨越 V1 到可靠 V2 的关键。
本文带你走进李飞飞的AI世界,从她开创ImageNet的往事,到为何空间智能是通用人工智能(AGI)不可或缺的下一步。你将读到她的创业故事、技术洞见,以及她如何带领团队攻克3D世界模型的难题——这些都是视频中才能听到的第一手细节。
Zed 联合创始人 Nathan Sobo 通过一次真实的产品实践,讲述了当 AI 引入软件系统后,传统确定性测试如何失效,以及他们如何一步步构建“随机但可控”的评估体系,让 AI 功能也能被严肃地交付。
这场演讲直指企业AI落地的最大幻觉:只要把数据“准备好”,AI就能可靠工作。Anushrut Gupta用大量真实场景说明,问题不在数据工具,而在AI不懂业务语言,并提出一种“像新人分析师一样成长”的Agentic语义层方案。
这场来自 Orb 联合创始人的演讲,讨论的不是“该收多少钱”,而是 AI 产品在不确定成本、不可见工作量和快速迭代下,如何建立可持续的定价体系。核心观点是:定价是一种有意识施加的“摩擦”,而 AI 时代的关键在于预测性、用户感知与灵活调整能力。
微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。
Neo4j 的 Jesús Barrasa 在这场分享中提出了一个反直觉但极具实践价值的观点:要让 AI Agent 更可靠,关键不只是更大的模型,而是一套清晰的“知识作战手册”——本体论。通过将本体论引入 Graph RAG,他展示了如何在构建和检索两个阶段显著提升 AI 应用的质量与可控性。
这场演讲给出了一个清晰判断:未来 AI Agent 的竞争核心不在提示词,而在记忆。MongoDB 的 Richmond Alake 从工程实践出发,系统拆解了 Agent Memory 的定义、类型、架构模式以及检索的重要性,解释了为什么“没有记忆,就没有真正的 Agent”。