从零搭建AI沙盒:OpenAI工程师如何用MicroVM重新定义安全边界
这场由OpenAI工程师Abhishek Bhardwaj带来的演讲,完整拆解了AI沙盒系统Arrakis的设计动机与技术实现。通过对容器、虚拟化与MicroVM的逐层对比,他展示了一条兼顾安全性与工程效率的现实路径。
这场由OpenAI工程师Abhishek Bhardwaj带来的演讲,完整拆解了AI沙盒系统Arrakis的设计动机与技术实现。通过对容器、虚拟化与MicroVM的逐层对比,他展示了一条兼顾安全性与工程效率的现实路径。
Gregory Bruss提出了一种不同于AI通话机器人的思路:语音优先的AI叠加层。它不参与对话,而是悄然增强人类交流。本文还原其核心理念、真实演示与工程难题,解释为何“会说话的AI”真正的挑战不在模型,而在时机、注意力与人性化设计。
Y Combinator最新一期节目深入讨论了AI Coding Agents的崛起。Tom通过亲身经历和YC内部数据,展示了软件开发正在被快速自动化的现实,并给出一个清晰判断:传统软件工程岗位会被重塑,但高主观能动性的个体和创业者,正迎来历史上最好的时代。
这场演讲来自Arista Networks技术负责人Paul Gilbert,核心不是“堆算力”,而是如何用网络视角重新理解AI数据中心。文章还原他在一线构建网络时遇到的真实变化:全新的流量模式、意外的故障机制,以及为什么“把网络做简单”反而成了最激进的设计原则。
Thomson Reuters Labs 的 Shirsha Chaudhuri 通过真实的企业一线经验,拆解了“AI 工作流自动化”迟迟难以落地的关键原因。问题不在模型能力,而在连接、可靠性、标准化和人与 AI 的协作方式。
这场由 Vercel AI SDK 团队成员 Nico 主讲的 Masterclass,不只是一次 API 教程,而是完整展示了如何用统一接口、工具调用和结构化输出,逐步搭建一个“深度研究型 AI Agent”。从最基础的 generateText,到递归式研究代理,视频给出了清晰、可复用的工程路径。
在这场近两小时的工作坊中,MemGPT 与 Letta 的创始人 Charles Packer 系统讲解了什么是 Stateful Agents,以及为什么“记忆”会成为下一代 AI 应用的分水岭。本文提炼了他关于 Agent 稳定性、记忆架构、工程取舍和真实应用场景的关键洞见。
SignalFire产品负责人Heath Black结合自身从文学到AI的跨界经历,分享了他们如何用数据和叙事重新定义AI团队的招聘方式。这场演讲给出的不是泛泛而谈的“招人建议”,而是一套基于6500万级数据洞察的可执行方法论。
这场分享不是发布新模型,而是Anthropic首次系统性讲清:大模型如何真正进入企业核心业务。从Claude 3.5 Sonnet的工程优势,到可解释性如何影响安全与商业价值,再到客户实践中踩过的坑,这是一份来自一线的企业AI落地方法论。
RAG(检索增强生成)的提出者Douwe Kiela,用真实的企业落地经验解释了一个残酷现实:AI投入巨大,但真正产生价值的公司不到四分之一。这篇文章提炼了他在生产环境中踩过的坑、反直觉的认知,以及为什么“系统”和“上下文”才是AI ROI的决定因素。