一年半实战后,他总结了构建GenAI应用的12条硬核教训
基于Juan Peredo一年半构建生成式AI应用的真实经验,这篇文章系统梳理了从架构复杂度、模型部署、评估体系,到Agent成本与可观测性的关键教训,帮助开发者少走弯路,把GenAI真正落地为可靠产品。
基于Juan Peredo一年半构建生成式AI应用的真实经验,这篇文章系统梳理了从架构复杂度、模型部署、评估体系,到Agent成本与可观测性的关键教训,帮助开发者少走弯路,把GenAI真正落地为可靠产品。
这场演讲并不是在教你“怎么调Prompt”,而是试图回答一个更难的问题:为什么90%的LLM应用死在生产环境。Almog Baku用工程师和创业者的视角,提出了“LLM三角”方法论——模型、工程技术、数据,在SOP的约束下协同工作,才可能构建稳定、可复现的AI应用。
这是一篇关于AI Agent如何被错误营销、以及这种叙事为何正在伤害开发者与产品本身的文章。来自前GitHub Copilot开发者布道师的亲身经验,提出了一套“克制而真实的拟人化”框架,帮助AI工具在获得采用率的同时,避免透支开发者信任。
这篇文章基于Theory Ventures合伙人Andy Tadman的演讲,系统拆解了“大语言模型在哪些工作上已经是超人级别”的判断方法。你将看到一套清晰的自动化评估框架,以及安全运营和客户营销两个真实案例,理解为什么真正被颠覆的不是“复杂工作”,而是“高频工作”。
这不是一场教你用框架的Agent演讲,而是一位工程师带你从最原始的循环、判断和工具调用开始,亲手“跑起来、弄坏它”,直到真正理解Agent为何会像一个能自主行动的系统。
这支视频讨论了一个常被忽视的问题:当大语言模型进入几乎没有训练数据的领域时,该如何继续发挥价值?作者提出了一种务实的方法——用“可验证的规则和经验法则”去弥补知识缺口,让模型在低知识密度领域依然具备可用的推理能力。
这场演讲提出了一个反直觉但极具现实意义的观点:企业AI落地的最大障碍不是模型能力,而是部署方式。Steven Moon主张,真正可规模化的AI代理,应该像员工一样工作在企业既有的安全边界内,而不是成为又一个需要审查的新系统。
许多团队投入大量精力做LLM评估,却依然在生产环境频频翻车。本文基于AI Engineer的一场演讲,解释为什么常见的评估体系会“看起来很好、实际上没用”,以及如何通过持续对齐评估器、数据集和真实用户需求,让评估真正产生价值。
一位从临床医生转型为AI工程师的创业者,分享了他们在真实医疗场景中处理10万级决策时踩过的坑与破局方法。文章深入讲述了为何传统人工评审和离线评测会在规模化时失效,以及“实时、无参考评估”如何成为建立客户信任的关键基础设施。
这是一篇关于“反聊天机器人思维”的AI产品设计文章。作者结合自己在AI问题追踪工具中的一线实践,提出一种更主动、更贴合工作流的AI设计范式:不等用户提问,而是在关键时刻自动介入、给出高质量建议,真正提升效率。