“提示工程已死”:一场由评估器驱动的反直觉实验
Nir Gazit用一次真实的RAG机器人优化实验,挑战了“提示工程是一门手艺”的共识。他没有手工打磨prompt,而是用评估器和Agent把效果从0.4推到0.9,给出了一条更像工程、也更可扩展的路径。
Nir Gazit用一次真实的RAG机器人优化实验,挑战了“提示工程是一门手艺”的共识。他没有手工打磨prompt,而是用评估器和Agent把效果从0.4推到0.9,给出了一条更像工程、也更可扩展的路径。
Temporal 工程师 Mason Egger 提出一个颠覆直觉的观点:事件驱动架构并不适合 AI Agent。通过天文学隐喻、真实事故经历和架构对比,他解释了为什么我们把“事件”放错了位置,以及“Durable Execution”为何可能成为下一代 AI Agent 的核心抽象。
这场来自 AI Engineer 的演示,展示了如何用 Heroku Managed Inference 与 Agents,把“会推理的大模型”真正接入应用。它不谈空泛愿景,而是通过现场部署与工具调用,讲清 Agentic 应用为何可行、难点在哪,以及工程师该如何一步步落地。
这场演讲直指企业AI落地的最大幻觉:只要把数据“准备好”,AI就能可靠工作。Anushrut Gupta用大量真实场景说明,问题不在数据工具,而在AI不懂业务语言,并提出一种“像新人分析师一样成长”的Agentic语义层方案。
这场来自 Orb 联合创始人的演讲,讨论的不是“该收多少钱”,而是 AI 产品在不确定成本、不可见工作量和快速迭代下,如何建立可持续的定价体系。核心观点是:定价是一种有意识施加的“摩擦”,而 AI 时代的关键在于预测性、用户感知与灵活调整能力。
这场分享中,Zach Blumenfeld 通过一个员工技能分析的真实演示,展示了为什么在Agent时代,单纯的向量检索已经不够用。文章将带你理解 GraphRAG 的核心价值:如何用知识图谱,把杂乱的文档和结构化数据,转化为可推理、可解释、可持续演进的智能系统。
微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。
这场来自 Neo4j 的分享,展示了“Graph Intelligence”如何在大模型时代补齐推理与检索的短板。演讲者通过现场演示说明:与其一味扩大模型,不如用图结构组织知识、驱动问题,并放大已有数据的价值。
这是一场不太像传统技术分享的演讲。Mark Bain 从个人经历出发,把 AI Agent 的“记忆问题”放进更大的数学、物理和生物学框架中重新审视,并提出:只有把记忆当成结构化的关系网络,而不是简单存储,AI 才可能真正走向自治与协作。
Neo4j 的 Jesús Barrasa 在这场分享中提出了一个反直觉但极具实践价值的观点:要让 AI Agent 更可靠,关键不只是更大的模型,而是一套清晰的“知识作战手册”——本体论。通过将本体论引入 Graph RAG,他展示了如何在构建和检索两个阶段显著提升 AI 应用的质量与可控性。