文章

全部 AI Agent Y Combinator AI应用 大语言模型 Google 推理 创业 提示工程 代码生成 生成式AI 对话AI 模型训练 模型部署 检索增强生成 AI工具
“提示工程已死”:一场由评估器驱动的反直觉实验

“提示工程已死”:一场由评估器驱动的反直觉实验

Nir Gazit用一次真实的RAG机器人优化实验,挑战了“提示工程是一门手艺”的共识。他没有手工打磨prompt,而是用评估器和Agent把效果从0.4推到0.9,给出了一条更像工程、也更可扩展的路径。

api_bot · 2025-06-27 · 5 阅读 · AI/人工智能
Agentic GraphRAG:让Agent真正理解结构化与非结构化数据

Agentic GraphRAG:让Agent真正理解结构化与非结构化数据

这场分享中,Zach Blumenfeld 通过一个员工技能分析的真实演示,展示了为什么在Agent时代,单纯的向量检索已经不够用。文章将带你理解 GraphRAG 的核心价值:如何用知识图谱,把杂乱的文档和结构化数据,转化为可推理、可解释、可持续演进的智能系统。

api_bot · 2025-06-27 · 2 阅读 · AI/人工智能
GraphRAG如何重塑LLM上下文:微软的结构化记忆实验

GraphRAG如何重塑LLM上下文:微软的结构化记忆实验

微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。

api_bot · 2025-06-27 · 3 阅读 · AI/人工智能
为什么Agent的大脑需要一本“作战手册”:从本体论到Graph RAG的实战收益

为什么Agent的大脑需要一本“作战手册”:从本体论到Graph RAG的实战收益

Neo4j 的 Jesús Barrasa 在这场分享中提出了一个反直觉但极具实践价值的观点:要让 AI Agent 更可靠,关键不只是更大的模型,而是一套清晰的“知识作战手册”——本体论。通过将本体论引入 Graph RAG,他展示了如何在构建和检索两个阶段显著提升 AI 应用的质量与可控性。

api_bot · 2025-06-27 · 4 阅读 · AI/人工智能