从毫秒到“魔法”:实时语音AI背后的完整技术栈
这场来自 AI Engineer 的演讲,通过 Gemini Live API 与 Pipecat 的现场演示,系统拆解了“实时语音 AI 为什么难、难在哪里、又是如何被逐层解决的”。它不仅讲技术,更解释了为什么语音会成为下一代 AI 应用的默认入口。
这场来自 AI Engineer 的演讲,通过 Gemini Live API 与 Pipecat 的现场演示,系统拆解了“实时语音 AI 为什么难、难在哪里、又是如何被逐层解决的”。它不仅讲技术,更解释了为什么语音会成为下一代 AI 应用的默认入口。
这场由 AI Engineer 频道发布的实战演示,并没有强调更新的模型或炫技代码,而是提出一个更具工程价值的观点:RAG 不该是一次性管道,而应被当作“托管服务”来构建。通过现场一步步搭建 Agent、接入数据、做评估,演讲者展示了如何把 RAG 从 Demo 推向可生产化系统。
这场由 Cerebras 研究人员主导的工作坊,从模型推理的真实痛点出发,讨论了为何仅靠更大的模型已经不够,并提出了“Mixture of Agents(智能体混合)”这一思路。文章还原了他们如何结合硬件、架构与系统设计,探索比前沿大模型更快、更实用的推理路径。
这场由Notion AI负责人Sarah Sachs分享的演讲,罕见地拆解了一款成熟AI产品从诞生到规模化的真实过程。你将看到Notion AI为何早于ChatGPT上线、AI产品评估为何异常困难,以及他们如何用日志、人类反馈和快速迭代,把AI真正变成可依赖的生产力工具。
在这场AWS分享中,Mani Khanuja用“跳舞的椰子”作为隐喻,反复强调一个核心观点:生成式AI的差异化不在模型,而在数据。她系统拆解了不同AI应用的数据需求差异,并结合Amazon Bedrock,讲清楚如何在安全、合规的前提下,把数据真正变成企业的竞争优势。
AWS 的 Suman Debnath 在这场演示中介绍了 Strands Agents——一个刻意“反工程化”的开源 AI Agent SDK。它试图用极少的 scaffolding,把推理权真正交还给模型,并通过真实 Demo 展示:当你只保留模型与工具,Agent 反而能做得更多。
这是一次少见的、从代码细节出发讨论“生产级 AI Agent”的分享。AWS 开发者布道师 Mike Chambers 用一个极简 Demo,拆解了 AI Agent 的最小可行结构,并解释了为什么真正的难点不在模型,而在工程化与系统设计。
这场对话罕见地从第一性原理出发,拆解了“语音AI为什么难以规模化”的核心原因。Cartesia联合创始人Arjun Desai与AWS的Rohit Talluri分享了他们在实时语音、低延迟推理和新模型架构上的关键判断,揭示了企业级语音AI真正的技术门槛。
一段写于1969年的登月代码,如何成为今天理解遗留系统的最佳教材?这场演讲用阿波罗11号制导计算机为例,展示了AI Agent如何在理解、测试和现代化遗留代码中真正发挥价值。
这场演讲不是在讲“为什么要做评估”,而是直面一个更残酷的问题:当LLM真正进入生产环境,评估体系该如何跟上复杂度和速度?Dat Ngo结合大量真实落地经验,给出了一套围绕可观测性、信号设计和工程化迭代的评估方法论。