为什么90%的GenAI项目卡在规模化?AWS架构师的7个评估习惯
AWS首席应用AI架构师Justin Mohler基于多年一线经验指出:生成式AI无法规模化,最大瓶颈不是模型,而是评估体系。本文通过真实失败与逆袭案例,系统拆解他提出的“高效GenAI评估七大习惯”,解释为什么评估不是打分工具,而是发现问题、驱动成功的核心引擎。
AWS首席应用AI架构师Justin Mohler基于多年一线经验指出:生成式AI无法规模化,最大瓶颈不是模型,而是评估体系。本文通过真实失败与逆袭案例,系统拆解他提出的“高效GenAI评估七大习惯”,解释为什么评估不是打分工具,而是发现问题、驱动成功的核心引擎。
这场演讲分享了Cato在构建云架构AI Copilot过程中的真实探索:为什么传统自动化不够用,以及如何通过多智能体、图结构和严谨评估,让AI参与复杂的架构推理与决策。
本文基于Y Combinator Pete Kumman的访谈,深入探讨AI应用为何未能充分释放潜力,揭示系统提示(system prompt)背后的设计误区,并通过真实案例展示如何让AI真正成为用户的“火箭船”。文章还预测了AI工具与用户交互的新范式,对开发者和产品经理极具启发意义。
在通用大模型准确率逼近90%的今天,Writer CTO Waseem Alshikh 用一套真实金融场景评测给出了反直觉答案:越“会思考”的模型,在金融任务中越容易胡编。本文还原这次评测的来龙去脉、关键数据和对行业的深远启示。
在这场演讲中,SuperDial工程师Nick分享了他们在真实电话场景中构建语音AI的经验:为什么“无聊但可靠”的通话才是好产品,以及语音AI工程师在2025年究竟要解决哪些最后一公里问题。
在AI Agent被热烈追捧的当下,Sayash Kapoor给出了一次“泼冷水式”的演讲:Agent并没有我们想象中那么可靠。通过法律、科研和产品落地的真实失败案例,他指出问题不在模型能力,而在评估方法与可靠性工程。
一家只有两名核心工程师参与的团队,如何在金融这种高风险场景中,把AI Agent真正推到生产环境,并支撑每天千万级请求?这场分享讲清了从GPT-4试水、成本失控,到微调小模型实现质量、成本、延迟三赢的完整路径。
这是一场来自彭博社AI工程负责人Anju Kambadur的实战分享。她没有停留在“Agent很有前途”的空谈,而是用彭博在真实金融场景中的产品经验,讲清楚什么是可落地的Agent、为什么必须是“半自动”、以及在高风险行业里,Agent规模化的真正难点。
在AI能力指数级增长的2025年,真正可用的AI Agent却迟迟未落地。Lux Capital合伙人Grace Isford用一个订机票的失败案例,拆解了Agent系统中被忽视的“累积误差”,并给出了构建下一代AI Agent的五条现实路径。
GPT-4.5并非一次颠覆式飞跃,却揭示了大模型进化的新方向:更强的世界理解、更低的幻觉率,以及前所未有的“人味”。这篇文章解码它为何重要、为何克制,以及它如何成为通向GPT-5的关键桥梁。