用“搜索”重写深度学习编译器:Luminal的反直觉选择
Joe Fioti在这场演讲中提出了一个反直觉但极具启发性的观点:深度学习并不复杂,复杂的是我们构建它的方式。Luminal选择从搜索出发重新设计深度学习编译器,试图用极致的简化换取更大的系统空间。
Joe Fioti在这场演讲中提出了一个反直觉但极具启发性的观点:深度学习并不复杂,复杂的是我们构建它的方式。Luminal选择从搜索出发重新设计深度学习编译器,试图用极致的简化换取更大的系统空间。
Alex Liss提出,用AI模拟“看不见的用户”,让设计从堆砌聊天机器人回归真正的用户需求发现。通过智能用户分身(intelligent twins)参与设计流程,团队可以在更快、更大规模下发现痛点,修复AI时代的信任危机。
AWS首席应用AI架构师Justin Mohler基于多年一线经验指出:生成式AI无法规模化,最大瓶颈不是模型,而是评估体系。本文通过真实失败与逆袭案例,系统拆解他提出的“高效GenAI评估七大习惯”,解释为什么评估不是打分工具,而是发现问题、驱动成功的核心引擎。
在AI Agent被热烈追捧的当下,Sayash Kapoor给出了一次“泼冷水式”的演讲:Agent并没有我们想象中那么可靠。通过法律、科研和产品落地的真实失败案例,他指出问题不在模型能力,而在评估方法与可靠性工程。
LinkedIn并非一开始就要打造宏大的GenAI平台,而是在真实产品压力下,一步步演化出支撑AI Agent的基础设施。本文还原Xiaofeng Wang的分享,讲清楚他们为何自建平台、如何从简单Prompt走向多智能体系统,以及这些选择背后的工程与组织洞见。
SignalFire产品负责人Heath Black结合自身从文学到AI的跨界经历,分享了他们如何用数据和叙事重新定义AI团队的招聘方式。这场演讲给出的不是泛泛而谈的“招人建议”,而是一套基于6500万级数据洞察的可执行方法论。
在这场看似轻松却信息密度极高的演讲中,swyx给出了一个清晰信号:AI工程正在从“调用模型”迈向“构建Agent”。这不仅是技术能力成熟的结果,更是一场关于身份、方法论和产业方向的转变。
在AI能力指数级增长的2025年,真正可用的AI Agent却迟迟未落地。Lux Capital合伙人Grace Isford用一个订机票的失败案例,拆解了Agent系统中被忽视的“累积误差”,并给出了构建下一代AI Agent的五条现实路径。
这篇文章还原了Cohere工程师Shaan Desai关于“企业级LLM Agent如何真正跑起来”的一线经验,从框架选择、单/多Agent策略,到安全、评估与失败治理,揭示了为什么大多数Agent原型很炫却难以规模化,以及Cohere如何把这些教训固化成产品North。
这篇文章基于Theory Ventures合伙人Andy Tadman的演讲,系统拆解了“大语言模型在哪些工作上已经是超人级别”的判断方法。你将看到一套清晰的自动化评估框架,以及安全运营和客户营销两个真实案例,理解为什么真正被颠覆的不是“复杂工作”,而是“高频工作”。