AI优先时代,真正该怎么组建一支现代AI团队?
在“AI正在取代工程师”的喧嚣中,Wisedocs 机器学习负责人 Denys Linkov 给出了一个更冷静、也更残酷的答案:问题从来不在技术,而在团队结构与认知。本文系统梳理他关于 AI 团队构成、通才与专才演化、以及何时该招聘人的一整套方法论。
在“AI正在取代工程师”的喧嚣中,Wisedocs 机器学习负责人 Denys Linkov 给出了一个更冷静、也更残酷的答案:问题从来不在技术,而在团队结构与认知。本文系统梳理他关于 AI 团队构成、通才与专才演化、以及何时该招聘人的一整套方法论。
Retool 产品负责人 Donald Hruska 直言:企业在 AI 上已经投入了半万亿美元,却大多停留在聊天机器人和代码补全阶段。真正的拐点,是“能接入生产系统、带护栏的 AI Agents”。这场演讲系统讲清了 agents 为什么今年才成立、难点在哪,以及企业该如何在“自建还是买平台”之间做出理性选择。
本文带你走进Chelsea Finn在Y Combinator分享的机器人学习前沿实践,从失败到突破,揭示通用机器人如何通过大规模数据、预训练与微调,逐步迈向“能做任何事”的物理智能。你将看到真实的技术难题、创业故事,以及对未来机器人行业的独到预判。
本文带你走进诺奖得主John Jumper的AI科学之路,揭秘AlphaFold背后的技术突破、真实故事与行业洞见。你将看到AI如何改变蛋白质结构预测、催生科学新范式,以及科学家们如何用AI工具创造意想不到的成果。
本文梳理了吴恩达在Y Combinator Startup School的精彩演讲,聚焦AI技术如何重塑创业速度、团队协作与产品开发。从“agentic AI”到代码生成工具的演进,再到创业者的决策方法和伦理选择,文章结合具体案例与金句,揭示了AI应用层的巨大机会与现实挑战。
本文带你走进François Chollet在Y Combinator的演讲,了解AI领域从“规模化预训练”到“测试时自适应”的重大范式转变,以及ARC系列基准如何推动AGI的真正进步。文章还揭示了人类智能的本质、AI模型的瓶颈,以及未来AI如何像程序员一样自主发明和学习。
Rick Blalock在一次真实而略显混乱的现场演示中,讲清了当下AI Agent最被低估的难题:部署与运行。他用学生项目和自身踩坑经历,解释为什么Serverless并不适合长跑型Agent,以及为什么“Agent Native”的基础设施正在成为新一代云的分水岭。
Charles Frye 用现场基准测试回答了一个被反复讨论却少有数据支撑的问题:今天的 LLM 推理引擎到底有多快?这场分享不讲抽象趋势,而是用真实模型、真实接口、真实延迟,说明为什么“自托管”在 2025 年终于变得合理。
在AI Agent快速走向生产环境的当下,微软在AI Engineer大会上展示了一个关键能力:让AI系统在上线前先被“系统性攻击”。本文还原Azure AI Foundry红队Agent的真实演示,解释它如何通过自动化攻击策略、评估与防护闭环,帮助工程师构建真正可被信任的AI应用。
当AI大幅加速写代码的“内循环”,测试、评审、合并、部署的“外循环”正在成为新的瓶颈。Graphite联合创始人Tomas Reimers分享了他们如何用AI解决AI带来的问题,以及为什么未来的开发工具必须是“AI原生”的。