2个工程师,如何把AI Agent推到5亿级生产规模
一家只有两名核心工程师参与的团队,如何在金融这种高风险场景中,把AI Agent真正推到生产环境,并支撑每天千万级请求?这场分享讲清了从GPT-4试水、成本失控,到微调小模型实现质量、成本、延迟三赢的完整路径。
一家只有两名核心工程师参与的团队,如何在金融这种高风险场景中,把AI Agent真正推到生产环境,并支撑每天千万级请求?这场分享讲清了从GPT-4试水、成本失控,到微调小模型实现质量、成本、延迟三赢的完整路径。
Sierra工程负责人Zack Reneau‑Wedeen用一连串真实故事,讲述了他们如何构建、上线并持续改进AI Agent。与其谈模型参数,他更强调“开发生命周期”:从真实场景出发,让Agent在不断使用中进化。
RAG(检索增强生成)的提出者Douwe Kiela,用真实的企业落地经验解释了一个残酷现实:AI投入巨大,但真正产生价值的公司不到四分之一。这篇文章提炼了他在生产环境中踩过的坑、反直觉的认知,以及为什么“系统”和“上下文”才是AI ROI的决定因素。
Brightwave创始人Mike Conover从金融尽调一线的“人肉地狱”出发,讲述为什么金融AI Agent必须以“可验证”为核心设计原则,以及为何聊天式交互远不足以承载高风险金融决策。
很多企业都在“上AI”,却答不出ROI。Booking.com与Sourcegraph分享了一条少见的路径:从真实的工程痛点出发,用AI Agent逐步吞掉软件开发中的高比例“toil”,并用严格的数据证明,开发者效率确实提升了30%以上。
YC最新视频聚焦AI代理平台Manis:它并非更强的单一模型,而是一套精密的多智能体协作系统。文章深入拆解其技术架构、真实能力、成本优势,以及“应用层rapper”模式的机会与隐忧,帮助读者理解AI代理下一阶段真正的竞争焦点。
在这场来自AI Engineer Summit的演讲中,Neo4j的Stephen Chin与辉瑞的Jonathan Lowe直面一个残酷现实:大量生成式AI项目正在走向失败。通过一个真实的生物制药案例,他们展示了如何用知识图谱和Graph RAG,把“炫技的AI”变成真正能落地、能拯救生命的企业级系统。
PyTorch 联合创始人 Soumith Chintala 从亲身使用 AI 的挫折与收获出发,提出一个与主流云端 Agent 不同的判断:真正能托付个人生活的 AI,必须运行在本地、完全私有。本文还原他的关键故事、技术现实与尚未解决的挑战。
Anthropic 的 Barry Zhang 用一次极其克制的演讲,拆解了“有效 Agent”真正难的地方:不是能力不够,而是人们用错了地方、把系统设计得过于复杂。本文还原他关于 Agent 演进路径、使用边界与设计心法的核心洞见。
这场来自 Y Combinator 的对谈,围绕一个看似简单却极具挑战的问题展开:为什么我们拥有前所未有的技术潜力,却越来越难把它们变成现实世界的进步?演讲者从科研制度、基础设施、能源到创业文化,提出了一套关于“重新加速”的发明与政策思路。