当AI开始“自我编程”:一个真实发生的自举型编码代理故事
这不是科幻设想,而是Augment Code团队的真实经历:一个AI编码代理在人的监督下,写下了自己90%以上的代码。Colin Flaherty分享了这个自举型Agent从集成工具、写测试到给自己做性能优化的全过程,以及他们在实践中踩过的坑与形成的方法论。
这不是科幻设想,而是Augment Code团队的真实经历:一个AI编码代理在人的监督下,写下了自己90%以上的代码。Colin Flaherty分享了这个自举型Agent从集成工具、写测试到给自己做性能优化的全过程,以及他们在实践中踩过的坑与形成的方法论。
很多企业都在“上AI”,却答不出ROI。Booking.com与Sourcegraph分享了一条少见的路径:从真实的工程痛点出发,用AI Agent逐步吞掉软件开发中的高比例“toil”,并用严格的数据证明,开发者效率确实提升了30%以上。
Figma创始人兼CEO Dylan Field在YC的对谈中,分享了他对AI、设计角色与软件未来的关键判断。从“想法迷宫”到“锁定优势”,这是一套只有亲历者才能讲清的设计与创业方法论。
这场演讲给出了一个非常具体、可落地的判断:软件开发正在从“人+IDE里的AI助手”,走向“人+一群自治运行的编码Agent”。通过真实的单元测试Agent Guru,演讲者展示了Agent如何成为代码库里的“正式贡献者”,以及未来开发者真正该专注的价值所在。
这是一篇关于AI Agent如何被错误营销、以及这种叙事为何正在伤害开发者与产品本身的文章。来自前GitHub Copilot开发者布道师的亲身经验,提出了一套“克制而真实的拟人化”框架,帮助AI工具在获得采用率的同时,避免透支开发者信任。
这不是一场教你用框架的Agent演讲,而是一位工程师带你从最原始的循环、判断和工具调用开始,亲手“跑起来、弄坏它”,直到真正理解Agent为何会像一个能自主行动的系统。
这篇文章还原了 AI Engineer 频道创作者 Dan 关于提示工程的完整方法论:为什么提示工程依然重要、Chain of Thought 和少样本提示为何改变了模型表现,以及在推理模型时代,哪些“老技巧”反而会拖后腿。读完你将知道,问题不在模型,而在你如何与它对话。
这是一篇关于“反聊天机器人思维”的AI产品设计文章。作者结合自己在AI问题追踪工具中的一线实践,提出一种更主动、更贴合工作流的AI设计范式:不等用户提问,而是在关键时刻自动介入、给出高质量建议,真正提升效率。
Y Combinator合伙人在《Light Cone》中讨论了AI如何重塑企业软件的价值结构:模型正在被快速商品化,而真正的护城河转向工作流、业务逻辑与数据。本文提炼他们对“智能成本归零”、SaaS新周期以及AI优先公司的关键判断。
这期来自 Y Combinator 的《Light Cone》并没有讨论模型参数或榜单,而是揭示了一个更隐秘的变化:AI 正在重塑创业的速度、组织形态和价值来源。YC 看到的,不只是“更强的工具”,而是一条正在分岔的未来道路。