从音频到Token:一次真实的文本转语音微调全流程
这篇文章完整还原了Ronan McGovern关于文本转语音模型微调的实战工作坊,从音频Token化的底层原理,到如何用YouTube数据构建训练集,再到实际微调和效果对比,帮助读者理解现代TTS模型真正“怎么练成”。
这篇文章完整还原了Ronan McGovern关于文本转语音模型微调的实战工作坊,从音频Token化的底层原理,到如何用YouTube数据构建训练集,再到实际微调和效果对比,帮助读者理解现代TTS模型真正“怎么练成”。
这场演讲试图回答一个尖锐问题:当AI需要处理最敏感的数据、最值钱的模型、最不可信的协作者时,我们还能不能放心用云?Mike Bursell用“GPU-less、Trust-less、Limit-less”三个关键词,系统性地重构了机密AI云的技术逻辑与商业想象。
本文深入解析了Y Combinator创业者在AI代理和提示工程领域的最新实践,分享了独特的行业洞见、真实的创业故事,以及当前最有效的技术方法。通过具体案例和金句,带你理解AI代理如何从“像编程一样”变成“像管理人一样”,并揭示了未来AI产品的核心竞争力。
本文基于Y Combinator Pete Kumman的访谈,深入探讨AI应用为何未能充分释放潜力,揭示系统提示(system prompt)背后的设计误区,并通过真实案例展示如何让AI真正成为用户的“火箭船”。文章还预测了AI工具与用户交互的新范式,对开发者和产品经理极具启发意义。
在通用大模型准确率逼近90%的今天,Writer CTO Waseem Alshikh 用一套真实金融场景评测给出了反直觉答案:越“会思考”的模型,在金融任务中越容易胡编。本文还原这次评测的来龙去脉、关键数据和对行业的深远启示。
在AI Agent被热烈追捧的当下,Sayash Kapoor给出了一次“泼冷水式”的演讲:Agent并没有我们想象中那么可靠。通过法律、科研和产品落地的真实失败案例,他指出问题不在模型能力,而在评估方法与可靠性工程。
这篇文章还原了Cohere工程师Shaan Desai关于“企业级LLM Agent如何真正跑起来”的一线经验,从框架选择、单/多Agent策略,到安全、评估与失败治理,揭示了为什么大多数Agent原型很炫却难以规模化,以及Cohere如何把这些教训固化成产品North。
这支视频讨论了一个常被忽视的问题:当大语言模型进入几乎没有训练数据的领域时,该如何继续发挥价值?作者提出了一种务实的方法——用“可验证的规则和经验法则”去弥补知识缺口,让模型在低知识密度领域依然具备可用的推理能力。
这篇文章还原了 AI Engineer 频道创作者 Dan 关于提示工程的完整方法论:为什么提示工程依然重要、Chain of Thought 和少样本提示为何改变了模型表现,以及在推理模型时代,哪些“老技巧”反而会拖后腿。读完你将知道,问题不在模型,而在你如何与它对话。
许多团队投入大量精力做LLM评估,却依然在生产环境频频翻车。本文基于AI Engineer的一场演讲,解释为什么常见的评估体系会“看起来很好、实际上没用”,以及如何通过持续对齐评估器、数据集和真实用户需求,让评估真正产生价值。