为什么大多数AI产品失败:两位创业者的真实迭代方法论
这是一场关于“如何真正把AI产品做成”的坦诚对话。Raindrop CTO Ben Hylak 与连续创业者 Sid Bendre 用大量失败案例和一线经验,拆解了AI产品中最容易被忽视的真问题:不是模型不够强,而是迭代方式、信号设计和产品认知出了错。
这是一场关于“如何真正把AI产品做成”的坦诚对话。Raindrop CTO Ben Hylak 与连续创业者 Sid Bendre 用大量失败案例和一线经验,拆解了AI产品中最容易被忽视的真问题:不是模型不够强,而是迭代方式、信号设计和产品认知出了错。
Adobe应用AI负责人Muktesh Mishra在这场分享中,系统拆解了为何“评估(Evals)”已成为AI应用的生命线,以及如何跳出准确率与相似度的局限,把Evals当作一套可规模化、可演进的工程体系来建设。
这场演讲展示了一种全新的阅读范式:书不再只是静态文字,而是能听、能问、能理解上下文的互动体验。演讲者通过真实的个人困惑出发,讲述了如何用AI重构阅读,并分享了隐藏AI、强调人类审美的产品方法论。
Brian Balfour 用25年创业与产品经验,拆解当下最残酷的AI产品竞争现实:模型不是护城河,速度也不再安全。真正的胜负,来自对未被满足需求的洞察,以及数据、功能与AI能力的系统化组合。
这是一场偏实战的工作坊,Nick Nisi 与 Zack Proser 用一个“生成表情包”的完整案例,讲清楚了 Mastra 如何在纯 TypeScript 中构建 AI workflows、tools 与 agents。视频最大的价值不在概念,而在于他们如何把看似复杂的 Agent 系统拆成可组合、可调试、可落地的工程结构。
Simon Willison 用一场充满幽默的演讲,回顾了 2025 年前六个月大模型世界的剧烈变化:模型更便宜、更强、本地可跑,也更危险。这篇文章提炼了他最重要的判断、案例和隐忧,帮你快速理解今年 LLM 发展的真实方向。
ArtificialAnalysis 联合创始人 George Cameron 用真实基准数据揭示:AI 不只有“最强智能”这一条前沿。推理模型的高代价、开源权重的快速逼近、以及成本与速度的数量级差异,正在重塑我们构建 AI 应用的方式。
Sourcegraph CTO Beyang Liu 认为,AI 编码代理不是更聪明的 Copilot,而是一种全新的软件交互范式。他从模型演进、产品设计到真实用户行为,拆解了“如何真正用好编码代理”这项正在浮现的新技能。
这是一场来自OpenAI开发者体验团队的一线分享。Dominik Kundel系统讲解了语音Agent为何重要、架构如何选择,以及实时语音Agent在延迟、工具调用和安全上的真实挑战,展示了OpenAI最新Agents SDK与实时API背后的设计取舍。
Nir Gazit用一次真实的RAG机器人优化实验,挑战了“提示工程是一门手艺”的共识。他没有手工打磨prompt,而是用评估器和Agent把效果从0.4推到0.9,给出了一条更像工程、也更可扩展的路径。