从一美元买走雪佛兰谈起:如何真正构建可信任的AI
这是一篇基于Allie Howe演讲的视频深度文章,系统讲清什么是可信任AI、为什么问题已经迫在眉睫,以及她给出的实操路径:从ML SecOps、模型安全,到AI红队和运行时防护,最终把AI安全变成竞争优势。
这是一篇基于Allie Howe演讲的视频深度文章,系统讲清什么是可信任AI、为什么问题已经迫在眉睫,以及她给出的实操路径:从ML SecOps、模型安全,到AI红队和运行时防护,最终把AI安全变成竞争优势。
本文深度还原了Cursor CEO Michael Tru在Y Combinator访谈中的核心观点与创业故事,剖析AI如何颠覆传统编程、团队如何从机械设计转向代码智能、以及未来软件工程师不可替代的“品味”价值。适合关注AI、开发工具和创新创业的读者。
Wordware CEO Filip Kozera 直言:聊天式 AI 天生不适合构建可复用、可扩展的系统。真正能把自然语言转化为代码、并催生后台智能体(Agents)的,是结构化文档与人类在环的协作方式。
这是一段关于生死边缘反击的故事。StackBlitz在几乎被董事会关停的情况下,用Bolt.new完成了DevTools领域少见的AI突围。Victoria Melnikova用亲历者视角,拆解了哪些AI策略注定失败,以及一个真正可复制的三步方法论。
这场演讲不是在教你如何“再写一个更聪明的Agent”,而是在回答一个更现实的问题:当Agent已经复杂到不可控时,团队该如何判断它到底哪里坏了、又该先修哪里。Aparna分享了一套从工具调用到多轮对话、再到自我改进的评估方法论。
这支演讲并不是吐槽ChatGPT功能不够强,而是直指一个更少被讨论的问题:设计。演讲者通过真实演示,指出ChatGPT在语音与文本、多模型协作上的割裂体验,并展示如何用现成API重构一个“更像人类交流”的AI界面。
Kent C. Dodds 在这场演讲中抛出一个关键判断:AI 交互正在成为主流入口,但真正限制 AI 助手能力的不是模型,而是“无法动手”。他以 Jarvis 为隐喻,系统讲解了 Model Context Protocol(MCP)如何通过标准化集成,让 AI 首次具备真正操作应用和服务的能力。
Alex Liss提出,用AI模拟“看不见的用户”,让设计从堆砌聊天机器人回归真正的用户需求发现。通过智能用户分身(intelligent twins)参与设计流程,团队可以在更快、更大规模下发现痛点,修复AI时代的信任危机。
AI Agent 一旦组成网络就容易失控,这是行业的共同痛点。Fruit Signals CEO Ari Heljakka 在这场演讲中提出:真正的突破不在于更聪明的模型,而在于通过 MCP(Model Context Protocol)把“评估”嵌入 Agent 的行动回路,让它们学会自我纠错与稳定协作。
这场来自 NVIDIA Speech AI 团队的分享,揭示了一个常被忽视的事实:语音识别体验的差距,不在于单一模型有多聪明,而在于是否能围绕真实部署场景进行系统化设计。从流式ASR到多说话人识别,从模型结构到部署形态,NVIDIA给出了他们“终结尴尬转写”的方法论。