实时语音AI的生死线:为什么延迟决定一切
这是一场关于实时语音AI的“反直觉”分享:模型能力并不是决定体验的关键,延迟才是。来自 OpenAI 和 Daily 的工程师,用一次紧张又好笑的现场 Demo,拆解了语音 AI 成败背后的真实技术逻辑。
这是一场关于实时语音AI的“反直觉”分享:模型能力并不是决定体验的关键,延迟才是。来自 OpenAI 和 Daily 的工程师,用一次紧张又好笑的现场 Demo,拆解了语音 AI 成败背后的真实技术逻辑。
在这场关于LLM评测的演讲中,Red Hat 的 AI 开发者倡导者 Taylor Jordan Smith 用大量真实经验说明:生成式 AI 的最大风险不在“不会用”,而在“用得太快”。这篇文章提炼了他关于企业级大模型落地、评测体系与渐进式成熟路径的核心洞见。
这场来自 Waymo 的技术分享,讲述了自动驾驶从早期神经网络到基础模型时代的关键跃迁。核心不在于“再堆一点模型”,而是如何用多模态、可解释的方式,解决规模化中最棘手的长尾安全问题。
Pydantic作者Samuel Colvin在一次AI Engineer演讲中,抛出了一个反直觉观点:在生成式AI飞速变化的今天,真正不该被忽视的,是类型安全和工程基本功。他用真实代码演示解释了,为什么Agent并不神秘,以及为什么类型系统正在成为AI应用可维护性的核心。
这场Latent Space Paper Club的特别版,不只是回顾一年多的论文讨论,更借DeepSeek R1/V3这篇“经得起时间考验”的论文,系统讲清了推理模型、蒸馏路线以及训练方法上的关键取舍。你能看到一个技术社区如何成长,也能理解DeepSeek为何在推理能力上引发关注。
很多AI编码工具能快速写出“能跑的代码”,却难以进入生产环境。Imbue CTO Josh Albrecht通过真实开发经验,系统拆解了AI代码质量失控的根源,并给出一套从预防到检测、修复的完整方法论,解释如何让AI真正成为可靠的软件工程师。
这场来自 Ivan Burazin 的演讲提出了一个激进判断:未来软件不再主要为“人”设计,而是为数量呈指数级增长的 AI Agent 服务。文章梳理他对 Agent Experience(AX)的定义、关键技术原则,以及为什么“只是把过去的产品移植过来”会彻底失败。
这场演讲没有谈影像识别或新药研发,而是把镜头对准了医疗体系中最不性感、却最烧钱的角落:收入周期管理。Nathan Wan 结合自己在 Google、医疗 AI 创业公司以及 Ensemble Health 的经历,讲述了为什么“让 AI 把钱收回来”,可能是当下对医疗系统影响最大的一件事。
两位来自 AlixPartners 的 AI 负责人,用两年内部实践讲清一个残酷现实:生成式 AI 正在系统性压缩专业服务的工时,但真正被颠覆的不是“计费”,而是价值创造方式。
这场演讲从一个哲学问题出发:什么是“商店”?Adam Behrens给出的答案并不止于零售形态的变化,而是指出AI正在把买卖双方本身数字化。文章将带你理解:从实体店到电商,再到AI Agent,交易的本质如何被重塑,以及这对未来商业意味着什么。