看不见的用户:用AI模拟重塑UX设计迭代速度
Alex Liss提出,用AI模拟“看不见的用户”,让设计从堆砌聊天机器人回归真正的用户需求发现。通过智能用户分身(intelligent twins)参与设计流程,团队可以在更快、更大规模下发现痛点,修复AI时代的信任危机。
Alex Liss提出,用AI模拟“看不见的用户”,让设计从堆砌聊天机器人回归真正的用户需求发现。通过智能用户分身(intelligent twins)参与设计流程,团队可以在更快、更大规模下发现痛点,修复AI时代的信任危机。
在这场AI Engineer大会的演讲中,Michael Yuan提出了一个反直觉却极具前瞻性的判断:Rust不是为“人类程序员”设计的,而是为“AI写代码”准备的语言。他通过Rust Coder项目和现场演示,解释了在AGI逐步成形的世界里,编程语言的核心标准正在发生根本性转变。
Blender MCP 并不是又一个“AI 自动建模”工具,而是一次对创作工具范式的重构。通过 MCP 协议,LLM 开始直接操控 Blender 这样的复杂软件,把“学习工具”这一步彻底隐藏在背后。本文还原了作者的真实动机、踩过的坑,以及他对未来创作工具的判断。
AWS首席应用AI架构师Justin Mohler基于多年一线经验指出:生成式AI无法规模化,最大瓶颈不是模型,而是评估体系。本文通过真实失败与逆袭案例,系统拆解他提出的“高效GenAI评估七大习惯”,解释为什么评估不是打分工具,而是发现问题、驱动成功的核心引擎。
Thomson Reuters Labs 的 Shirsha Chaudhuri 通过真实的企业一线经验,拆解了“AI 工作流自动化”迟迟难以落地的关键原因。问题不在模型能力,而在连接、可靠性、标准化和人与 AI 的协作方式。
这场由 Vercel AI SDK 团队成员 Nico 主讲的 Masterclass,不只是一次 API 教程,而是完整展示了如何用统一接口、工具调用和结构化输出,逐步搭建一个“深度研究型 AI Agent”。从最基础的 generateText,到递归式研究代理,视频给出了清晰、可复用的工程路径。
一家只有两名核心工程师参与的团队,如何在金融这种高风险场景中,把AI Agent真正推到生产环境,并支撑每天千万级请求?这场分享讲清了从GPT-4试水、成本失控,到微调小模型实现质量、成本、延迟三赢的完整路径。
在这场来自AI Engineer Summit的演讲中,Neo4j的Stephen Chin与辉瑞的Jonathan Lowe直面一个残酷现实:大量生成式AI项目正在走向失败。通过一个真实的生物制药案例,他们展示了如何用知识图谱和Graph RAG,把“炫技的AI”变成真正能落地、能拯救生命的企业级系统。
这是一场来自彭博社AI工程负责人Anju Kambadur的实战分享。她没有停留在“Agent很有前途”的空谈,而是用彭博在真实金融场景中的产品经验,讲清楚什么是可落地的Agent、为什么必须是“半自动”、以及在高风险行业里,Agent规模化的真正难点。
在AI能力指数级增长的2025年,真正可用的AI Agent却迟迟未落地。Lux Capital合伙人Grace Isford用一个订机票的失败案例,拆解了Agent系统中被忽视的“累积误差”,并给出了构建下一代AI Agent的五条现实路径。