Gemini这一年:一次“转折点”背后的模型、组织与未来
这是一次来自Google DeepMind一线的内部复盘。Logan Kilpatrick用不到12分钟,讲清了Gemini过去一年真正的转折点:为什么2.5 Pro意义重大,DeepMind为何从“纯研究”转向“研究+交付”,以及他们眼中多模态、Agent和“无限上下文”的下一站。
这是一次来自Google DeepMind一线的内部复盘。Logan Kilpatrick用不到12分钟,讲清了Gemini过去一年真正的转折点:为什么2.5 Pro意义重大,DeepMind为何从“纯研究”转向“研究+交付”,以及他们眼中多模态、Agent和“无限上下文”的下一站。
Google DeepMind研究员Jack Rae从研究视角解释了Gemini中“thinking”的来龙去脉:它并非简单让模型回答更慢,而是试图解决大语言模型在推理、验证和人类理解层面的核心瓶颈。这场演讲揭示了DeepMind内部对智能进展的判断框架。
Traversal.ai CEO Anish Agarwal 直言,生产环境软件“不断出问题,而且只会更糟”。在这场演讲中,他拆解了现代软件排障为何正在失效,并分享了他们如何用 AI Agent 重构工程师的故障处理方式。
本文梳理了吴恩达在Y Combinator Startup School的精彩演讲,聚焦AI技术如何重塑创业速度、团队协作与产品开发。从“agentic AI”到代码生成工具的演进,再到创业者的决策方法和伦理选择,文章结合具体案例与金句,揭示了AI应用层的巨大机会与现实挑战。
Simon Willison 用一场充满幽默的演讲,回顾了 2025 年前六个月大模型世界的剧烈变化:模型更便宜、更强、本地可跑,也更危险。这篇文章提炼了他最重要的判断、案例和隐忧,帮你快速理解今年 LLM 发展的真实方向。
ArtificialAnalysis 联合创始人 George Cameron 用真实基准数据揭示:AI 不只有“最强智能”这一条前沿。推理模型的高代价、开源权重的快速逼近、以及成本与速度的数量级差异,正在重塑我们构建 AI 应用的方式。
本文基于Y Combinator现场讨论,深入解析AI浪潮下年轻人如何规划人生和职业。你将看到真实创业故事、行业独特洞见,以及面对技术变革时的具体选择困境。无论是大学生、工程师还是创业者,这些经验和观点都能为你在AI时代找到属于自己的路径。
Prime Intellect 的 Will Brown 认为,推理模型与 AI Agent 并非两条独立技术路线,而是同一问题的不同侧面。本次演讲从强化学习的复兴讲起,结合架构、奖励设计和玩具案例,揭示了训练“会行动的推理模型”为何正在变得可行,却依然充满挑战。
纽约时报游戏开发者 Shafik Quoraishee 通过《Connections》这款现象级文字游戏,做了一次“非官方”的AI实验。它不是为了让模型通关,而是借助失败,揭示大语言模型在抽象推理、语义对齐和误导信息面前的真实能力边界。
Anthropic 的 Boris Cherny 通过回顾编程工具的百年演进,解释了为什么“智能体式编程”不是噱头,而是一次必然的 UX 变革。本文还原他在 Claude Code 发布演讲中的核心洞见、真实故事与具体实践。