当基准测试变成模因:是谁在悄悄塑造AI的未来
Alex Duffy提出一个反直觉却极具力量的观点:AI基准测试不是中立工具,而是像“模因”一样会传播、进化,并最终塑造模型能力与人类价值。通过Pokémon、Diplomacy等生动案例,他揭示了谁在定义评测,谁就在定义AI要变成什么。
Alex Duffy提出一个反直觉却极具力量的观点:AI基准测试不是中立工具,而是像“模因”一样会传播、进化,并最终塑造模型能力与人类价值。通过Pokémon、Diplomacy等生动案例,他揭示了谁在定义评测,谁就在定义AI要变成什么。
本文带你走进诺奖得主John Jumper的AI科学之路,揭秘AlphaFold背后的技术突破、真实故事与行业洞见。你将看到AI如何改变蛋白质结构预测、催生科学新范式,以及科学家们如何用AI工具创造意想不到的成果。
这场演讲展示了Circle如何将USDC与AI代理结合,把传统需要人工信任的托管流程,重构为可编程、可自动执行的链上机制。核心不在于支付更快,而在于“信任如何被软件化”。
Brian Balfour 用25年创业与产品经验,拆解当下最残酷的AI产品竞争现实:模型不是护城河,速度也不再安全。真正的胜负,来自对未被满足需求的洞察,以及数据、功能与AI能力的系统化组合。
这场演讲系统梳理了提示工程从“技巧”走向“方法论”的过程,并自然过渡到AI红队这一安全视角。演讲者结合自身从强化学习到LearnPrompting的经历,解释为什么理解模型能力边界,已经成为使用与部署大模型的必修课。
这是一场专为Web开发者准备的演讲:Ishan Anand用大约600行原生JavaScript,从零跑起一个GPT‑2级别的语言模型。文章还原他在现场的讲解路径,带你理解Token、Embedding、MLP和Language Head如何串起来,以及为什么ChatGPT并不“神秘”。
这是一场偏实战的工作坊,Nick Nisi 与 Zack Proser 用一个“生成表情包”的完整案例,讲清楚了 Mastra 如何在纯 TypeScript 中构建 AI workflows、tools 与 agents。视频最大的价值不在概念,而在于他们如何把看似复杂的 Agent 系统拆成可组合、可调试、可落地的工程结构。
在这场来自 OpenAI 的演讲中,Sean Grove 提出一个颠覆工程师直觉的观点:未来最有价值的产出不再是代码,而是“规格说明(specification)”。随着 AI 编程能力提升,真正稀缺的能力正在从写代码转向写清楚意图、价值与边界。
这是一场少见的、以工程实践为中心的Google Gemini工作坊。演讲者不讲宏大叙事,而是带着开发者一步步跑Notebook、问价格、调输出、连工具,展示了Gemini 2.0在真实工程场景中的使用方式与边界。
本文带你深入了解Perplexity创始人Aravind Srinivas如何以极致速度和技术创新挑战Google、OpenAI等巨头,揭秘AI搜索与智能代理的未来,以及创业路上的真实故事和独特洞见。