从自行车上的鹈鹕,看懂2025年上半年大模型真正的拐点
Simon Willison 用一场充满幽默的演讲,回顾了 2025 年前六个月大模型世界的剧烈变化:模型更便宜、更强、本地可跑,也更危险。这篇文章提炼了他最重要的判断、案例和隐忧,帮你快速理解今年 LLM 发展的真实方向。
Simon Willison 用一场充满幽默的演讲,回顾了 2025 年前六个月大模型世界的剧烈变化:模型更便宜、更强、本地可跑,也更危险。这篇文章提炼了他最重要的判断、案例和隐忧,帮你快速理解今年 LLM 发展的真实方向。
ArtificialAnalysis 联合创始人 George Cameron 用真实基准数据揭示:AI 不只有“最强智能”这一条前沿。推理模型的高代价、开源权重的快速逼近、以及成本与速度的数量级差异,正在重塑我们构建 AI 应用的方式。
MongoDB 的 Apoorva Joshi 用一场近 90 分钟的演讲,系统拆解了如何从零构建多模态 AI Agent,更重要的是,她反复强调一个被忽视的问题:什么时候真的需要 Agent,什么时候反而不该用。
MongoDB旗下Voyage AI的Frank Liu,用10多分钟梳理了AI搜索与检索的现状与未来。他不仅回顾了从BM25到Embedding的技术演进,更明确指出:真正拉开差距的不是“用不用向量”,而是Embedding质量、多模态能力,以及是否具备指令理解与推理能力。
MongoDB收购的创业公司CEO、斯坦福教师腾宇·马,从一线实践出发,讲述RAG在2025年的真实状态:为什么它仍然不可替代、哪些改进已经被验证有效,以及多模态Embedding将把RAG带向哪里。
在这场由微软首席AI布道师Cedric Vidal带来的分享中,评估被重新定义为AI Agent开发的起点而非终点。通过手动评估、Spot Check到代码化和多模态评估的逐步演示,他展示了一条让Agent真正可控、可扩展的实践路径。
这场由 Pipecat 与 Tavus 联合分享的演讲,罕见地从工程一线拆解了“实时对话视频 AI”为什么过去很糟、现在终于可行,以及真正的难点不在模型本身,而在编排与部署。读完你会理解,一个 600 毫秒响应的对话式视频系统,究竟是怎样被搭出来的。
这场对话罕见地从第一性原理出发,拆解了“语音AI为什么难以规模化”的核心原因。Cartesia联合创始人Arjun Desai与AWS的Rohit Talluri分享了他们在实时语音、低延迟推理和新模型架构上的关键判断,揭示了企业级语音AI真正的技术门槛。
本文带你走进Sam Altman在Y Combinator访谈中的深度思考,揭示OpenAI如何从一群“被认为疯了”的创业者,成长为全球AI创新的引擎。你将看到AI技术演进背后的关键决策、团队故事,以及对未来AI硬件、智能社会的独特预判。
本文深度还原了Cursor CEO Michael Tru在Y Combinator访谈中的核心观点与创业故事,剖析AI如何颠覆传统编程、团队如何从机械设计转向代码智能、以及未来软件工程师不可替代的“品味”价值。适合关注AI、开发工具和创新创业的读者。