当推荐系统遇上大模型:三条正在成形的演进路线
在这场Recsys主题演讲中,Eugene Yan没有讨论“要不要用大模型”,而是回答了“该怎么用”。他用一系列真实案例,提出了三条正在落地的路径:语义化ID、基于大模型的数据增强,以及统一模型,展示了推荐与搜索系统在LLM时代的真实进化方式。
在这场Recsys主题演讲中,Eugene Yan没有讨论“要不要用大模型”,而是回答了“该怎么用”。他用一系列真实案例,提出了三条正在落地的路径:语义化ID、基于大模型的数据增强,以及统一模型,展示了推荐与搜索系统在LLM时代的真实进化方式。
Alex Duffy提出一个反直觉却极具力量的观点:AI基准测试不是中立工具,而是像“模因”一样会传播、进化,并最终塑造模型能力与人类价值。通过Pokémon、Diplomacy等生动案例,他揭示了谁在定义评测,谁就在定义AI要变成什么。
这场演讲系统梳理了提示工程从“技巧”走向“方法论”的过程,并自然过渡到AI红队这一安全视角。演讲者结合自身从强化学习到LearnPrompting的经历,解释为什么理解模型能力边界,已经成为使用与部署大模型的必修课。
在这场来自 OpenAI 的演讲中,Sean Grove 提出一个颠覆工程师直觉的观点:未来最有价值的产出不再是代码,而是“规格说明(specification)”。随着 AI 编程能力提升,真正稀缺的能力正在从写代码转向写清楚意图、价值与边界。
本文梳理了吴恩达在Y Combinator Startup School的精彩演讲,聚焦AI技术如何重塑创业速度、团队协作与产品开发。从“agentic AI”到代码生成工具的演进,再到创业者的决策方法和伦理选择,文章结合具体案例与金句,揭示了AI应用层的巨大机会与现实挑战。
Zapier团队分享了两年构建AI Agent平台的真实教训:难点不在模型,而在评估与反馈系统。本文还原他们如何把失败当作产品燃料,建立数据飞轮,并用工程化方法驯服不确定性的AI系统。
Sourcegraph CTO Beyang Liu 认为,AI 编码代理不是更聪明的 Copilot,而是一种全新的软件交互范式。他从模型演进、产品设计到真实用户行为,拆解了“如何真正用好编码代理”这项正在浮现的新技能。
这是一场来自OpenAI开发者体验团队的一线分享。Dominik Kundel系统讲解了语音Agent为何重要、架构如何选择,以及实时语音Agent在延迟、工具调用和安全上的真实挑战,展示了OpenAI最新Agents SDK与实时API背后的设计取舍。
在这场演讲中,Docker 创始人、Dagger CEO Solomon Hykes 用十年平台工程经验,直面一个新问题:当大量 AI coding agent 开始“结对编程”,混乱如何避免?他的答案不是更聪明的提示词,而是更严格、可组合的运行环境。
Zed 联合创始人 Nathan Sobo 通过一次真实的产品实践,讲述了当 AI 引入软件系统后,传统确定性测试如何失效,以及他们如何一步步构建“随机但可控”的评估体系,让 AI 功能也能被严肃地交付。