当软件变得容易,设计为何成了AI时代的护城河
Figma创始人兼CEO Dylan Field在YC的对谈中,分享了他对AI、设计角色与软件未来的关键判断。从“想法迷宫”到“锁定优势”,这是一套只有亲历者才能讲清的设计与创业方法论。
Figma创始人兼CEO Dylan Field在YC的对谈中,分享了他对AI、设计角色与软件未来的关键判断。从“想法迷宫”到“锁定优势”,这是一套只有亲历者才能讲清的设计与创业方法论。
Y Combinator 合伙人围绕 Andrej Karpathy 提出的“Vibe Coding”展开讨论,揭示了一种正在成为主流的编程方式:AI 大规模生成代码,人类工程师的重心转向品味、产品判断和调试能力。这不是一时潮流,而是软件工程角色的根本变化。
这篇文章还原了Cohere工程师Shaan Desai关于“企业级LLM Agent如何真正跑起来”的一线经验,从框架选择、单/多Agent策略,到安全、评估与失败治理,揭示了为什么大多数Agent原型很炫却难以规模化,以及Cohere如何把这些教训固化成产品North。
这场演讲给出了一个非常具体、可落地的判断:软件开发正在从“人+IDE里的AI助手”,走向“人+一群自治运行的编码Agent”。通过真实的单元测试Agent Guru,演讲者展示了Agent如何成为代码库里的“正式贡献者”,以及未来开发者真正该专注的价值所在。
Patrick Debois 从 Conway 定律出发,提出一个反直觉的问题:如果不再是组织决定软件,而是 AI 反过来重塑组织,会发生什么?这场演讲串联了 Copilot、AI Agent 到组织结构变化,描绘了一条正在发生的演进路径。
这是一篇关于AI Agent如何被错误营销、以及这种叙事为何正在伤害开发者与产品本身的文章。来自前GitHub Copilot开发者布道师的亲身经验,提出了一套“克制而真实的拟人化”框架,帮助AI工具在获得采用率的同时,避免透支开发者信任。
这场来自 TraceLoop CEO 的分享,用一个极其务实的视角解释了:为什么生成式 AI 的可观测性问题,不能从零重新发明,而应该建立在 OpenTelemetry 之上。你将理解日志、指标、追踪在 LLM 应用中的真实价值,以及 OpenLLMetry 如何把这些能力“自动”带入现有观测平台。
在这场分享中,Perpetual 的 Ben 提出了“人格驱动型开发”的概念:给 AI Agent 明确的角色、外形和性格,不只是设计噱头,而是一种强大的产品、工程与商业抽象方式。文章通过真实故事与一线经验,揭示这种设计范式的价值与代价。
Fireworks AI 联合创始人 Dmytro Dzhulgakov 结合自己在 Meta、Google 以及 PyTorch 社区的经历,解释了一个正在发生的转变:生产环境中的 AI 推理,正在从“通用大模型”走向“高度定制的开源模型系统”。这场演讲不仅讨论了成本与性能,更揭示了下一代 AI 产品的真实形态。
在这场来自AXA德国的真实分享中,Jeronim Morina用保险业的复杂场景,拆解了为什么“提示工程”正在失效,以及DSPy如何把大语言模型重新变成一个可优化、可度量、可工程化的系统。