从聊天到电话:Sierra的Agent进化方法论
Sierra工程负责人Zack Reneau‑Wedeen用一连串真实故事,讲述了他们如何构建、上线并持续改进AI Agent。与其谈模型参数,他更强调“开发生命周期”:从真实场景出发,让Agent在不断使用中进化。
Sierra工程负责人Zack Reneau‑Wedeen用一连串真实故事,讲述了他们如何构建、上线并持续改进AI Agent。与其谈模型参数,他更强调“开发生命周期”:从真实场景出发,让Agent在不断使用中进化。
Brightwave创始人Mike Conover从金融尽调一线的“人肉地狱”出发,讲述为什么金融AI Agent必须以“可验证”为核心设计原则,以及为何聊天式交互远不足以承载高风险金融决策。
这场来自Google DeepMind的分享,首次系统揭示了Gemini Deep Research背后的产品动机、UX权衡与技术挑战。它不只是“更慢但更长的回答”,而是一次试图让AI真正完成研究工作的实验。
Ramp工程负责人Rahul Sengottuvelu用真实生产系统说明:在大模型时代,最该被优化的不是规则和代码,而是“能否随算力变强”的系统结构。这是一场关于Agent架构、工程取舍和未来软件形态的反直觉分享。
Figma创始人兼CEO Dylan Field在YC的对谈中,分享了他对AI、设计角色与软件未来的关键判断。从“想法迷宫”到“锁定优势”,这是一套只有亲历者才能讲清的设计与创业方法论。
Morgan Stanley 机器学习研究员 Will Brown 通过一个真实项目故事,解释了为什么仅靠更大的模型无法催生真正的 AI Agent,以及强化学习如何成为连接模型、工具与环境的关键工程方法。
这支视频讨论了一个常被忽视的问题:当大语言模型进入几乎没有训练数据的领域时,该如何继续发挥价值?作者提出了一种务实的方法——用“可验证的规则和经验法则”去弥补知识缺口,让模型在低知识密度领域依然具备可用的推理能力。
这场演讲提出了一个反直觉但极具现实意义的观点:企业AI落地的最大障碍不是模型能力,而是部署方式。Steven Moon主张,真正可规模化的AI代理,应该像员工一样工作在企业既有的安全边界内,而不是成为又一个需要审查的新系统。
这场演讲给 Agent 评估提供了一张系统性的“地图”,把原本模糊的评估问题拆解为可操作的语义与行为维度。它不是教你某个指标,而是教你如何系统性地思考:一个 Agent 到底哪里可能出问题,又该如何衡量。
这是一篇关于“反聊天机器人思维”的AI产品设计文章。作者结合自己在AI问题追踪工具中的一线实践,提出一种更主动、更贴合工作流的AI设计范式:不等用户提问,而是在关键时刻自动介入、给出高质量建议,真正提升效率。