把RAG当成托管服务:15分钟搭建可上线的AI Agent
这场由 AI Engineer 频道发布的实战演示,并没有强调更新的模型或炫技代码,而是提出一个更具工程价值的观点:RAG 不该是一次性管道,而应被当作“托管服务”来构建。通过现场一步步搭建 Agent、接入数据、做评估,演讲者展示了如何把 RAG 从 Demo 推向可生产化系统。
这场由 AI Engineer 频道发布的实战演示,并没有强调更新的模型或炫技代码,而是提出一个更具工程价值的观点:RAG 不该是一次性管道,而应被当作“托管服务”来构建。通过现场一步步搭建 Agent、接入数据、做评估,演讲者展示了如何把 RAG 从 Demo 推向可生产化系统。
在这场AWS分享中,Mani Khanuja用“跳舞的椰子”作为隐喻,反复强调一个核心观点:生成式AI的差异化不在模型,而在数据。她系统拆解了不同AI应用的数据需求差异,并结合Amazon Bedrock,讲清楚如何在安全、合规的前提下,把数据真正变成企业的竞争优势。
这场演讲不是在讲“为什么要做评估”,而是直面一个更残酷的问题:当LLM真正进入生产环境,评估体系该如何跟上复杂度和速度?Dat Ngo结合大量真实落地经验,给出了一套围绕可观测性、信号设计和工程化迭代的评估方法论。
Jerry Liu在这场演讲中直言不讳地指出:当前大量AI Agent并没有真正自动化知识工作。他结合LlamaIndex的实践经验,系统拆解了知识型Agent的真实难点——非结构化数据、工具调用和端到端行动,并给出了一套更务实的构建方法论。
Patrick Debois 在这场演讲中提出了“AI 原生开发”的四种核心模式,解释了生成式 AI 如何系统性地改变软件工程师的工作重心:从写代码,到管理代理、表达意图、探索问题,再到沉淀知识。这不是效率工具的升级,而是一场角色与工作方式的重构。
这篇文章深入解读Vectara推出的开源项目 open-rag-eval,解释它为何要在没有“golden answers”的情况下评测RAG系统,以及背后的研究方法、关键指标和实际使用体验,帮助RAG开发者真正理解并优化自己的检索增强生成流水线。
在这场来自NVIDIA的分享中,Sylendran Arunagiri提出了一个反直觉但极具实操性的观点:高效、可扩展的AI Agent并不依赖更大的大语言模型,而依赖持续运转的数据飞轮。通过NVIDIA内部NV Info Agent的真实案例,他展示了如何用不到千条高质量数据,让1B、8B小模型逼近70B模型效果。
一次看似不可能的任务:两周内分析一万通销售电话。Charlie Guo 通过大语言模型、工程化系统设计和成本控制,把原本需要两年的人力工作,变成单人可完成的AI项目。这篇文章还原了其中最关键的技术决策、踩过的坑,以及对企业数据价值的深刻启示。
这是一次来自一线AI工程师的真实复盘:经历37次失败后,Jonathan Fernandes 总结出一套可在生产环境稳定运行的RAG技术栈。文章不仅讲清楚每一层该怎么选,更重要的是解释了为什么很多RAG项目会悄无声息地失败。
在RAG几乎成为标配的当下,评测却悄然失真。AI21 Labs的Yuval Belfer和Niv Granot通过真实案例指出:我们正在为错误的基准优化系统。本文还原他们的核心论证,解释为什么主流RAG评测无法反映真实世界,并介绍一种以结构化数据为中心的替代路径。