GraphRAG如何重塑LLM上下文:微软的结构化记忆实验
微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。
微软研究院Graph团队负责人Jonathan Larson,通过一系列真实演示展示了GraphRAG如何用“结构化记忆”解决大模型在复杂代码库和长上下文中的根本瓶颈。这场分享不仅关乎检索增强生成,更揭示了AI Agent走向可执行软件工程的关键路径。
Charles Frye 用现场基准测试回答了一个被反复讨论却少有数据支撑的问题:今天的 LLM 推理引擎到底有多快?这场分享不讲抽象趋势,而是用真实模型、真实接口、真实延迟,说明为什么“自托管”在 2025 年终于变得合理。
这场由 Pipecat 与 Tavus 联合分享的演讲,罕见地从工程一线拆解了“实时对话视频 AI”为什么过去很糟、现在终于可行,以及真正的难点不在模型本身,而在编排与部署。读完你会理解,一个 600 毫秒响应的对话式视频系统,究竟是怎样被搭出来的。
这场由 Cerebras 研究人员主导的工作坊,从模型推理的真实痛点出发,讨论了为何仅靠更大的模型已经不够,并提出了“Mixture of Agents(智能体混合)”这一思路。文章还原了他们如何结合硬件、架构与系统设计,探索比前沿大模型更快、更实用的推理路径。
AWS 的 Suman Debnath 在这场演示中介绍了 Strands Agents——一个刻意“反工程化”的开源 AI Agent SDK。它试图用极少的 scaffolding,把推理权真正交还给模型,并通过真实 Demo 展示:当你只保留模型与工具,Agent 反而能做得更多。
这场对话罕见地从第一性原理出发,拆解了“语音AI为什么难以规模化”的核心原因。Cartesia联合创始人Arjun Desai与AWS的Rohit Talluri分享了他们在实时语音、低延迟推理和新模型架构上的关键判断,揭示了企业级语音AI真正的技术门槛。
这场演讲不是在讲“为什么要做评估”,而是直面一个更残酷的问题:当LLM真正进入生产环境,评估体系该如何跟上复杂度和速度?Dat Ngo结合大量真实落地经验,给出了一套围绕可观测性、信号设计和工程化迭代的评估方法论。
本文梳理了4Erunner Ventures联合创始人Kirsten Green在Y Combinator专访中的核心观点,涵盖AI产品创新、用户关系新范式、产品分发与市场竞争、健康与安全等领域。通过真实案例和前沿预判,帮助创业者理解AI时代的产品机会与挑战。
本文带你走进Sam Altman在Y Combinator访谈中的深度思考,揭示OpenAI如何从一群“被认为疯了”的创业者,成长为全球AI创新的引擎。你将看到AI技术演进背后的关键决策、团队故事,以及对未来AI硬件、智能社会的独特预判。
本文深度还原了Elon Musk在Y Combinator AI Startup School的访谈,聚焦他对AI未来的独特预判、创业经历中的关键转折、技术落地的第一性原理,以及他对工程师的现实建议。你将看到,Musk如何用“做有用的事”串联起从Zip2到SpaceX、Tesla、XAI的每一次冒险,以及他对数字超级智能和多星球文明的终极思考。