为什么2025会成为AI Agent落地元年?MCP给出的答案
Last Mile AI CEO Sarmad Qadri结合自己从语言服务器协议到AI Agent的长期经验,提出了一个关键判断:2025年将是Agent大规模进入生产环境的一年。在这次分享中,他系统解释了Agent技术栈的三大变化、MCP为何会成为事实标准,以及为什么“Agent本质上是异步工作流”。
Last Mile AI CEO Sarmad Qadri结合自己从语言服务器协议到AI Agent的长期经验,提出了一个关键判断:2025年将是Agent大规模进入生产环境的一年。在这次分享中,他系统解释了Agent技术栈的三大变化、MCP为何会成为事实标准,以及为什么“Agent本质上是异步工作流”。
大模型Agent的失败,往往不是模型不够聪明,而是工具太“愚蠢”。Wordware联合创始人Robert Chandler结合自动驾驶与AI Agent实践,提出一个反直觉但关键的观点:不要让Agent被低级工具拖累,而是让工具本身具备更多“代理性”,真正学会替人思考和行动。
在这场来自NVIDIA的分享中,Sylendran Arunagiri提出了一个反直觉但极具实操性的观点:高效、可扩展的AI Agent并不依赖更大的大语言模型,而依赖持续运转的数据飞轮。通过NVIDIA内部NV Info Agent的真实案例,他展示了如何用不到千条高质量数据,让1B、8B小模型逼近70B模型效果。
这支演讲并不是吐槽ChatGPT功能不够强,而是直指一个更少被讨论的问题:设计。演讲者通过真实演示,指出ChatGPT在语音与文本、多模型协作上的割裂体验,并展示如何用现成API重构一个“更像人类交流”的AI界面。
Joe Fioti在这场演讲中提出了一个反直觉但极具启发性的观点:深度学习并不复杂,复杂的是我们构建它的方式。Luminal选择从搜索出发重新设计深度学习编译器,试图用极致的简化换取更大的系统空间。
从Instruct GPT到GPT‑4.1,语言模型在“听话”这件事上并没有线性进步。AI21 Labs 的 Yuval Belfer 通过工程视角给出答案:问题不在模型,而在我们把所有复杂性都塞进了一个提示词。真正可靠的 AI Agent,需要规划与执行引擎。
在RAG几乎成为标配的当下,评测却悄然失真。AI21 Labs的Yuval Belfer和Niv Granot通过真实案例指出:我们正在为错误的基准优化系统。本文还原他们的核心论证,解释为什么主流RAG评测无法反映真实世界,并介绍一种以结构化数据为中心的替代路径。
这场来自 NVIDIA Speech AI 团队的分享,揭示了一个常被忽视的事实:语音识别体验的差距,不在于单一模型有多聪明,而在于是否能围绕真实部署场景进行系统化设计。从流式ASR到多说话人识别,从模型结构到部署形态,NVIDIA给出了他们“终结尴尬转写”的方法论。
来自 14.ai 联合创始人兼 CTO Michael Fester 的真实经验,系统讲述如何用 TypeScript 的 Effect 库,在充满不确定性的 LLM 场景中构建可预测、可观测、可扩展的 AI 客服代理系统。
AWS首席应用AI架构师Justin Mohler基于多年一线经验指出:生成式AI无法规模化,最大瓶颈不是模型,而是评估体系。本文通过真实失败与逆袭案例,系统拆解他提出的“高效GenAI评估七大习惯”,解释为什么评估不是打分工具,而是发现问题、驱动成功的核心引擎。