当软件变得容易,设计为何成了AI时代的护城河
Figma创始人兼CEO Dylan Field在YC的对谈中,分享了他对AI、设计角色与软件未来的关键判断。从“想法迷宫”到“锁定优势”,这是一套只有亲历者才能讲清的设计与创业方法论。
Figma创始人兼CEO Dylan Field在YC的对谈中,分享了他对AI、设计角色与软件未来的关键判断。从“想法迷宫”到“锁定优势”,这是一套只有亲历者才能讲清的设计与创业方法论。
这场工作坊围绕Model Context Protocol(MCP)展开,系统解释了为什么“上下文”正在成为AI应用的核心基础设施。演讲者不仅讲清了MCP要解决的问题,还通过构建Agent的全过程,展示了一种不同于传统Prompt工程的新范式。
Patrick Dougherty在创业过程中推翻整套产品,转而用AI Agent重构系统。这次分享不是概念宣讲,而是来自真实生产环境的教训:什么才算Agent、为什么“会想”比“知道多”更重要,以及哪些常见做法其实在拖垮Agent表现。
这篇文章还原了Cohere工程师Shaan Desai关于“企业级LLM Agent如何真正跑起来”的一线经验,从框架选择、单/多Agent策略,到安全、评估与失败治理,揭示了为什么大多数Agent原型很炫却难以规模化,以及Cohere如何把这些教训固化成产品North。
基于Juan Peredo一年半构建生成式AI应用的真实经验,这篇文章系统梳理了从架构复杂度、模型部署、评估体系,到Agent成本与可观测性的关键教训,帮助开发者少走弯路,把GenAI真正落地为可靠产品。
这场演讲并不是在教你“怎么调Prompt”,而是试图回答一个更难的问题:为什么90%的LLM应用死在生产环境。Almog Baku用工程师和创业者的视角,提出了“LLM三角”方法论——模型、工程技术、数据,在SOP的约束下协同工作,才可能构建稳定、可复现的AI应用。
这是一篇关于AI Agent如何被错误营销、以及这种叙事为何正在伤害开发者与产品本身的文章。来自前GitHub Copilot开发者布道师的亲身经验,提出了一套“克制而真实的拟人化”框架,帮助AI工具在获得采用率的同时,避免透支开发者信任。
在Agentic AI成为主流的2025年,真正的难题已不再是模型能力,而是如何让AI系统变得可预测、可审计、可控制。AI Engineer频道的Adam Charlson提出,将有限状态机与Actor模型、LLM结合,或许是一条被低估但极其务实的路径。
这不是一场教你用框架的Agent演讲,而是一位工程师带你从最原始的循环、判断和工具调用开始,亲手“跑起来、弄坏它”,直到真正理解Agent为何会像一个能自主行动的系统。
这支视频讨论了一个常被忽视的问题:当大语言模型进入几乎没有训练数据的领域时,该如何继续发挥价值?作者提出了一种务实的方法——用“可验证的规则和经验法则”去弥补知识缺口,让模型在低知识密度领域依然具备可用的推理能力。