别再只盯着Agent了:Tool Calling才是AI系统的真正地基
Roy Derks在这场演讲中提出一个被严重低估的观点:AI Agent的能力上限,往往不是模型或框架决定的,而是由工具(Tool Calling)决定的。他结合自身创业与工程经验,系统讲解了为什么工具不是“管道”,而是AI应用层最重要的资产。
Roy Derks在这场演讲中提出一个被严重低估的观点:AI Agent的能力上限,往往不是模型或框架决定的,而是由工具(Tool Calling)决定的。他结合自身创业与工程经验,系统讲解了为什么工具不是“管道”,而是AI应用层最重要的资产。
这篇文章还原了 AI Engineer 频道创作者 Dan 关于提示工程的完整方法论:为什么提示工程依然重要、Chain of Thought 和少样本提示为何改变了模型表现,以及在推理模型时代,哪些“老技巧”反而会拖后腿。读完你将知道,问题不在模型,而在你如何与它对话。
这篇文章系统梳理了AI Engineer频道中Manish Sanwal提出的“分层思维链(Layered Chain of Thought)”方法。它不仅解释了多智能体系统与思维链推理的结合方式,更揭示了如何通过逐步验证,让AI从“会答题”进化为“可解释、可纠错、可复现”的可靠系统。
许多团队投入大量精力做LLM评估,却依然在生产环境频频翻车。本文基于AI Engineer的一场演讲,解释为什么常见的评估体系会“看起来很好、实际上没用”,以及如何通过持续对齐评估器、数据集和真实用户需求,让评估真正产生价值。
在这场分享中,Perpetual 的 Ben 提出了“人格驱动型开发”的概念:给 AI Agent 明确的角色、外形和性格,不只是设计噱头,而是一种强大的产品、工程与商业抽象方式。文章通过真实故事与一线经验,揭示这种设计范式的价值与代价。
在这场来自AXA德国的真实分享中,Jeronim Morina用保险业的复杂场景,拆解了为什么“提示工程”正在失效,以及DSPy如何把大语言模型重新变成一个可优化、可度量、可工程化的系统。
这是一场把大语言模型从聊天框带进真实世界的现场实验。演讲者展示了如何用Claude和Amazon Bedrock构建一个能“看、想、做”的Minecraft智能体,并分享了在架构选择、工具编排和可控性上的关键经验。
这期来自 Y Combinator 的《Light Cone》并没有讨论模型参数或榜单,而是揭示了一个更隐秘的变化:AI 正在重塑创业的速度、组织形态和价值来源。YC 看到的,不只是“更强的工具”,而是一条正在分岔的未来道路。
YC最新一期节目围绕o1模型与未来10万亿参数AI展开,讨论了算力竞赛、AGI边界、创业机会与基础设施变化。本文提炼其中最有价值的判断、真实案例和反直觉洞见,帮助创业者理解:在超级智能逼近的时代,真正的机会在哪里。
Y Combinator 的这期视频解释了 OpenAI o1 为什么被视为一代分水岭模型。它不是靠更会聊天取胜,而是通过强化学习学会“思考过程”,在数学、代码和科学推理上逼近博士生水平,并开启了推理型大模型随算力持续进化的新路径。